Properties

Label 24-588e12-1.1-c1e12-0-4
Degree $24$
Conductor $1.708\times 10^{33}$
Sign $1$
Analytic cond. $1.14776\times 10^{8}$
Root an. cond. $2.16684$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s − 12·3-s + 6·4-s − 48·6-s + 4·8-s + 78·9-s − 72·12-s + 16-s + 312·18-s − 48·24-s + 24·25-s − 364·27-s + 32·29-s − 16·31-s + 468·36-s + 32·37-s − 12·48-s + 96·50-s − 32·53-s − 1.45e3·54-s + 128·58-s + 16·59-s − 64·62-s + 312·72-s + 128·74-s − 288·75-s + 1.36e3·81-s + ⋯
L(s)  = 1  + 2.82·2-s − 6.92·3-s + 3·4-s − 19.5·6-s + 1.41·8-s + 26·9-s − 20.7·12-s + 1/4·16-s + 73.5·18-s − 9.79·24-s + 24/5·25-s − 70.0·27-s + 5.94·29-s − 2.87·31-s + 78·36-s + 5.26·37-s − 1.73·48-s + 13.5·50-s − 4.39·53-s − 198.·54-s + 16.8·58-s + 2.08·59-s − 8.12·62-s + 36.7·72-s + 14.8·74-s − 33.2·75-s + 151.·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{12} \cdot 7^{24}\right)^{s/2} \, \Gamma_{\C}(s)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{12} \cdot 7^{24}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(24\)
Conductor: \(2^{24} \cdot 3^{12} \cdot 7^{24}\)
Sign: $1$
Analytic conductor: \(1.14776\times 10^{8}\)
Root analytic conductor: \(2.16684\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((24,\ 2^{24} \cdot 3^{12} \cdot 7^{24} ,\ ( \ : [1/2]^{12} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(5.024877313\)
\(L(\frac12)\) \(\approx\) \(5.024877313\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p^{2} T + 5 p T^{2} - 5 p^{2} T^{3} + 35 T^{4} - 7 p^{3} T^{5} + 21 p^{2} T^{6} - 7 p^{4} T^{7} + 35 p^{2} T^{8} - 5 p^{5} T^{9} + 5 p^{5} T^{10} - p^{7} T^{11} + p^{6} T^{12} \)
3 \( ( 1 + T )^{12} \)
7 \( 1 \)
good5 \( 1 - 24 T^{2} + 296 T^{4} - 2744 T^{6} + 21123 T^{8} - 134032 T^{10} + 718928 T^{12} - 134032 p^{2} T^{14} + 21123 p^{4} T^{16} - 2744 p^{6} T^{18} + 296 p^{8} T^{20} - 24 p^{10} T^{22} + p^{12} T^{24} \)
11 \( 1 - 28 T^{2} + 586 T^{4} - 9388 T^{6} + 131503 T^{8} - 1628696 T^{10} + 19283052 T^{12} - 1628696 p^{2} T^{14} + 131503 p^{4} T^{16} - 9388 p^{6} T^{18} + 586 p^{8} T^{20} - 28 p^{10} T^{22} + p^{12} T^{24} \)
13 \( 1 - 64 T^{2} + 176 p T^{4} - 59968 T^{6} + 1236915 T^{8} - 20973696 T^{10} + 297955296 T^{12} - 20973696 p^{2} T^{14} + 1236915 p^{4} T^{16} - 59968 p^{6} T^{18} + 176 p^{9} T^{20} - 64 p^{10} T^{22} + p^{12} T^{24} \)
17 \( 1 - 88 T^{2} + 4536 T^{4} - 165688 T^{6} + 4700147 T^{8} - 107164048 T^{10} + 2007265136 T^{12} - 107164048 p^{2} T^{14} + 4700147 p^{4} T^{16} - 165688 p^{6} T^{18} + 4536 p^{8} T^{20} - 88 p^{10} T^{22} + p^{12} T^{24} \)
19 \( ( 1 + 42 T^{2} + 32 T^{3} + 1231 T^{4} + 544 T^{5} + 29916 T^{6} + 544 p T^{7} + 1231 p^{2} T^{8} + 32 p^{3} T^{9} + 42 p^{4} T^{10} + p^{6} T^{12} )^{2} \)
23 \( 1 - 60 T^{2} + 3354 T^{4} - 123436 T^{6} + 4153279 T^{8} - 110540568 T^{10} + 2811666956 T^{12} - 110540568 p^{2} T^{14} + 4153279 p^{4} T^{16} - 123436 p^{6} T^{18} + 3354 p^{8} T^{20} - 60 p^{10} T^{22} + p^{12} T^{24} \)
29 \( ( 1 - 16 T + 200 T^{2} - 1728 T^{3} + 13363 T^{4} - 84496 T^{5} + 496976 T^{6} - 84496 p T^{7} + 13363 p^{2} T^{8} - 1728 p^{3} T^{9} + 200 p^{4} T^{10} - 16 p^{5} T^{11} + p^{6} T^{12} )^{2} \)
31 \( ( 1 + 8 T + 130 T^{2} + 824 T^{3} + 8247 T^{4} + 42224 T^{5} + 314764 T^{6} + 42224 p T^{7} + 8247 p^{2} T^{8} + 824 p^{3} T^{9} + 130 p^{4} T^{10} + 8 p^{5} T^{11} + p^{6} T^{12} )^{2} \)
37 \( ( 1 - 16 T + 200 T^{2} - 1680 T^{3} + 13131 T^{4} - 82528 T^{5} + 535824 T^{6} - 82528 p T^{7} + 13131 p^{2} T^{8} - 1680 p^{3} T^{9} + 200 p^{4} T^{10} - 16 p^{5} T^{11} + p^{6} T^{12} )^{2} \)
41 \( 1 - 264 T^{2} + 32344 T^{4} - 2436136 T^{6} + 127693075 T^{8} - 5269183920 T^{10} + 207449944752 T^{12} - 5269183920 p^{2} T^{14} + 127693075 p^{4} T^{16} - 2436136 p^{6} T^{18} + 32344 p^{8} T^{20} - 264 p^{10} T^{22} + p^{12} T^{24} \)
43 \( 1 - 276 T^{2} + 36338 T^{4} - 3157924 T^{6} + 212530239 T^{8} - 11922137512 T^{10} + 561568704636 T^{12} - 11922137512 p^{2} T^{14} + 212530239 p^{4} T^{16} - 3157924 p^{6} T^{18} + 36338 p^{8} T^{20} - 276 p^{10} T^{22} + p^{12} T^{24} \)
47 \( ( 1 + 90 T^{2} + 160 T^{3} + 6183 T^{4} + 13280 T^{5} + 328892 T^{6} + 13280 p T^{7} + 6183 p^{2} T^{8} + 160 p^{3} T^{9} + 90 p^{4} T^{10} + p^{6} T^{12} )^{2} \)
53 \( ( 1 + 16 T + 342 T^{2} + 3952 T^{3} + 47367 T^{4} + 404032 T^{5} + 3397044 T^{6} + 404032 p T^{7} + 47367 p^{2} T^{8} + 3952 p^{3} T^{9} + 342 p^{4} T^{10} + 16 p^{5} T^{11} + p^{6} T^{12} )^{2} \)
59 \( ( 1 - 8 T + 210 T^{2} - 1624 T^{3} + 18415 T^{4} - 148976 T^{5} + 1121964 T^{6} - 148976 p T^{7} + 18415 p^{2} T^{8} - 1624 p^{3} T^{9} + 210 p^{4} T^{10} - 8 p^{5} T^{11} + p^{6} T^{12} )^{2} \)
61 \( 1 - 544 T^{2} + 142480 T^{4} - 23858720 T^{6} + 2849681139 T^{8} - 255863393088 T^{10} + 17709328352032 T^{12} - 255863393088 p^{2} T^{14} + 2849681139 p^{4} T^{16} - 23858720 p^{6} T^{18} + 142480 p^{8} T^{20} - 544 p^{10} T^{22} + p^{12} T^{24} \)
67 \( 1 - 356 T^{2} + 55762 T^{4} - 4560756 T^{6} + 122644383 T^{8} + 13948776888 T^{10} - 1693776977860 T^{12} + 13948776888 p^{2} T^{14} + 122644383 p^{4} T^{16} - 4560756 p^{6} T^{18} + 55762 p^{8} T^{20} - 356 p^{10} T^{22} + p^{12} T^{24} \)
71 \( 1 - 556 T^{2} + 151546 T^{4} - 27058972 T^{6} + 3535695487 T^{8} - 356059001528 T^{10} + 28330933942092 T^{12} - 356059001528 p^{2} T^{14} + 3535695487 p^{4} T^{16} - 27058972 p^{6} T^{18} + 151546 p^{8} T^{20} - 556 p^{10} T^{22} + p^{12} T^{24} \)
73 \( 1 - 480 T^{2} + 105792 T^{4} - 14378720 T^{6} + 1390885347 T^{8} - 108814494400 T^{10} + 7928879090304 T^{12} - 108814494400 p^{2} T^{14} + 1390885347 p^{4} T^{16} - 14378720 p^{6} T^{18} + 105792 p^{8} T^{20} - 480 p^{10} T^{22} + p^{12} T^{24} \)
79 \( 1 - 516 T^{2} + 134210 T^{4} - 23318900 T^{6} + 3036334383 T^{8} - 315920772616 T^{10} + 27245615350940 T^{12} - 315920772616 p^{2} T^{14} + 3036334383 p^{4} T^{16} - 23318900 p^{6} T^{18} + 134210 p^{8} T^{20} - 516 p^{10} T^{22} + p^{12} T^{24} \)
83 \( ( 1 - 8 T + 290 T^{2} - 1848 T^{3} + 43207 T^{4} - 256016 T^{5} + 4402748 T^{6} - 256016 p T^{7} + 43207 p^{2} T^{8} - 1848 p^{3} T^{9} + 290 p^{4} T^{10} - 8 p^{5} T^{11} + p^{6} T^{12} )^{2} \)
89 \( 1 - 696 T^{2} + 241496 T^{4} - 54982424 T^{6} + 9125837523 T^{8} - 1161685318736 T^{10} + 116205471399600 T^{12} - 1161685318736 p^{2} T^{14} + 9125837523 p^{4} T^{16} - 54982424 p^{6} T^{18} + 241496 p^{8} T^{20} - 696 p^{10} T^{22} + p^{12} T^{24} \)
97 \( 1 - 672 T^{2} + 218848 T^{4} - 46502304 T^{6} + 7344144003 T^{8} - 928722590784 T^{10} + 97980461927872 T^{12} - 928722590784 p^{2} T^{14} + 7344144003 p^{4} T^{16} - 46502304 p^{6} T^{18} + 218848 p^{8} T^{20} - 672 p^{10} T^{22} + p^{12} T^{24} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{24} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−3.54470271405179054786278605304, −3.52640011908604988402495134500, −3.40791202367358470281835003352, −3.32452999634377592438213705804, −3.24716173368295718757460436745, −3.00723501338294197275181538459, −2.99138299295223240724165414008, −2.87716514962878024219291212169, −2.72848621006591660369925944486, −2.57014348431682482815117370003, −2.52784460108444503538390616772, −2.44231312967821083392639401563, −2.23747750896269435079692223823, −1.88705664516773049847753762630, −1.81073648823693383640880583128, −1.69219235016130061996777563706, −1.65514511416910354814952332032, −1.30524912665631362720422055321, −1.19547476755475920160614407091, −1.11574592182140202984748143234, −0.939373943747392754081262912332, −0.67402527198949072103493791312, −0.66396054035713982276296485623, −0.60076418645101450947073223526, −0.42557544919503683521816132118, 0.42557544919503683521816132118, 0.60076418645101450947073223526, 0.66396054035713982276296485623, 0.67402527198949072103493791312, 0.939373943747392754081262912332, 1.11574592182140202984748143234, 1.19547476755475920160614407091, 1.30524912665631362720422055321, 1.65514511416910354814952332032, 1.69219235016130061996777563706, 1.81073648823693383640880583128, 1.88705664516773049847753762630, 2.23747750896269435079692223823, 2.44231312967821083392639401563, 2.52784460108444503538390616772, 2.57014348431682482815117370003, 2.72848621006591660369925944486, 2.87716514962878024219291212169, 2.99138299295223240724165414008, 3.00723501338294197275181538459, 3.24716173368295718757460436745, 3.32452999634377592438213705804, 3.40791202367358470281835003352, 3.52640011908604988402495134500, 3.54470271405179054786278605304

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.