L(s) = 1 | + (−11.7 + 11.7i)5-s + 11.9·7-s + (36.9 + 36.9i)11-s + (20.4 − 20.4i)13-s + 81.1i·17-s + (−29.9 − 29.9i)19-s − 163. i·23-s − 151. i·25-s + (201. + 201. i)29-s + 43.1i·31-s + (−141. + 141. i)35-s + (100. + 100. i)37-s − 345.·41-s + (−326. + 326. i)43-s − 116.·47-s + ⋯ |
L(s) = 1 | + (−1.05 + 1.05i)5-s + 0.647·7-s + (1.01 + 1.01i)11-s + (0.436 − 0.436i)13-s + 1.15i·17-s + (−0.361 − 0.361i)19-s − 1.48i·23-s − 1.21i·25-s + (1.28 + 1.28i)29-s + 0.249i·31-s + (−0.681 + 0.681i)35-s + (0.444 + 0.444i)37-s − 1.31·41-s + (−1.15 + 1.15i)43-s − 0.361·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.672 - 0.739i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.672 - 0.739i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.344785076\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.344785076\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (11.7 - 11.7i)T - 125iT^{2} \) |
| 7 | \( 1 - 11.9T + 343T^{2} \) |
| 11 | \( 1 + (-36.9 - 36.9i)T + 1.33e3iT^{2} \) |
| 13 | \( 1 + (-20.4 + 20.4i)T - 2.19e3iT^{2} \) |
| 17 | \( 1 - 81.1iT - 4.91e3T^{2} \) |
| 19 | \( 1 + (29.9 + 29.9i)T + 6.85e3iT^{2} \) |
| 23 | \( 1 + 163. iT - 1.21e4T^{2} \) |
| 29 | \( 1 + (-201. - 201. i)T + 2.43e4iT^{2} \) |
| 31 | \( 1 - 43.1iT - 2.97e4T^{2} \) |
| 37 | \( 1 + (-100. - 100. i)T + 5.06e4iT^{2} \) |
| 41 | \( 1 + 345.T + 6.89e4T^{2} \) |
| 43 | \( 1 + (326. - 326. i)T - 7.95e4iT^{2} \) |
| 47 | \( 1 + 116.T + 1.03e5T^{2} \) |
| 53 | \( 1 + (-16.3 + 16.3i)T - 1.48e5iT^{2} \) |
| 59 | \( 1 + (-46.4 - 46.4i)T + 2.05e5iT^{2} \) |
| 61 | \( 1 + (-69.6 + 69.6i)T - 2.26e5iT^{2} \) |
| 67 | \( 1 + (157. + 157. i)T + 3.00e5iT^{2} \) |
| 71 | \( 1 - 690. iT - 3.57e5T^{2} \) |
| 73 | \( 1 - 799. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 763. iT - 4.93e5T^{2} \) |
| 83 | \( 1 + (940. - 940. i)T - 5.71e5iT^{2} \) |
| 89 | \( 1 - 660.T + 7.04e5T^{2} \) |
| 97 | \( 1 + 821.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.70356886634887754398776859808, −10.02931811619834818057155602116, −8.555917371438287857609117737768, −8.117525191606581624269718690126, −6.85246136282859933627089644957, −6.53359203912557267080317613209, −4.81283943830429222266675874877, −4.00454825181027349033414641991, −2.94301291054395281002540167595, −1.45368056316785174068878250056,
0.43574812475653051698829203837, 1.51955451451459118559301831620, 3.43021274085139824023598846219, 4.28585544884547346318835202273, 5.17232536535163397363771273848, 6.33654742021438949129844156668, 7.51522049619003960293147894262, 8.367343705862593909648590211588, 8.857980227138941706070022238051, 9.855249292599746548087365321553