L(s) = 1 | + (−11.7 − 11.7i)5-s + 11.9·7-s + (36.9 − 36.9i)11-s + (20.4 + 20.4i)13-s − 81.1i·17-s + (−29.9 + 29.9i)19-s + 163. i·23-s + 151. i·25-s + (201. − 201. i)29-s − 43.1i·31-s + (−141. − 141. i)35-s + (100. − 100. i)37-s − 345.·41-s + (−326. − 326. i)43-s − 116.·47-s + ⋯ |
L(s) = 1 | + (−1.05 − 1.05i)5-s + 0.647·7-s + (1.01 − 1.01i)11-s + (0.436 + 0.436i)13-s − 1.15i·17-s + (−0.361 + 0.361i)19-s + 1.48i·23-s + 1.21i·25-s + (1.28 − 1.28i)29-s − 0.249i·31-s + (−0.681 − 0.681i)35-s + (0.444 − 0.444i)37-s − 1.31·41-s + (−1.15 − 1.15i)43-s − 0.361·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.672 + 0.739i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.672 + 0.739i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.344785076\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.344785076\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (11.7 + 11.7i)T + 125iT^{2} \) |
| 7 | \( 1 - 11.9T + 343T^{2} \) |
| 11 | \( 1 + (-36.9 + 36.9i)T - 1.33e3iT^{2} \) |
| 13 | \( 1 + (-20.4 - 20.4i)T + 2.19e3iT^{2} \) |
| 17 | \( 1 + 81.1iT - 4.91e3T^{2} \) |
| 19 | \( 1 + (29.9 - 29.9i)T - 6.85e3iT^{2} \) |
| 23 | \( 1 - 163. iT - 1.21e4T^{2} \) |
| 29 | \( 1 + (-201. + 201. i)T - 2.43e4iT^{2} \) |
| 31 | \( 1 + 43.1iT - 2.97e4T^{2} \) |
| 37 | \( 1 + (-100. + 100. i)T - 5.06e4iT^{2} \) |
| 41 | \( 1 + 345.T + 6.89e4T^{2} \) |
| 43 | \( 1 + (326. + 326. i)T + 7.95e4iT^{2} \) |
| 47 | \( 1 + 116.T + 1.03e5T^{2} \) |
| 53 | \( 1 + (-16.3 - 16.3i)T + 1.48e5iT^{2} \) |
| 59 | \( 1 + (-46.4 + 46.4i)T - 2.05e5iT^{2} \) |
| 61 | \( 1 + (-69.6 - 69.6i)T + 2.26e5iT^{2} \) |
| 67 | \( 1 + (157. - 157. i)T - 3.00e5iT^{2} \) |
| 71 | \( 1 + 690. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 799. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 763. iT - 4.93e5T^{2} \) |
| 83 | \( 1 + (940. + 940. i)T + 5.71e5iT^{2} \) |
| 89 | \( 1 - 660.T + 7.04e5T^{2} \) |
| 97 | \( 1 + 821.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.855249292599746548087365321553, −8.857980227138941706070022238051, −8.367343705862593909648590211588, −7.51522049619003960293147894262, −6.33654742021438949129844156668, −5.17232536535163397363771273848, −4.28585544884547346318835202273, −3.43021274085139824023598846219, −1.51955451451459118559301831620, −0.43574812475653051698829203837,
1.45368056316785174068878250056, 2.94301291054395281002540167595, 4.00454825181027349033414641991, 4.81283943830429222266675874877, 6.53359203912557267080317613209, 6.85246136282859933627089644957, 8.117525191606581624269718690126, 8.555917371438287857609117737768, 10.02931811619834818057155602116, 10.70356886634887754398776859808