L(s) = 1 | + (9.19 − 9.19i)5-s + 31.8i·7-s + (−24.6 + 24.6i)11-s + (43.7 + 43.7i)13-s − 128.·17-s + (−36.8 − 36.8i)19-s − 97.8i·23-s − 44.1i·25-s + (−70.2 − 70.2i)29-s − 280.·31-s + (293. + 293. i)35-s + (−85.9 + 85.9i)37-s − 153. i·41-s + (−14.1 + 14.1i)43-s + 318.·47-s + ⋯ |
L(s) = 1 | + (0.822 − 0.822i)5-s + 1.72i·7-s + (−0.676 + 0.676i)11-s + (0.933 + 0.933i)13-s − 1.83·17-s + (−0.444 − 0.444i)19-s − 0.886i·23-s − 0.353i·25-s + (−0.449 − 0.449i)29-s − 1.62·31-s + (1.41 + 1.41i)35-s + (−0.382 + 0.382i)37-s − 0.583i·41-s + (−0.0502 + 0.0502i)43-s + 0.987·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.833 - 0.551i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.833 - 0.551i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.9365463389\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9365463389\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (-9.19 + 9.19i)T - 125iT^{2} \) |
| 7 | \( 1 - 31.8iT - 343T^{2} \) |
| 11 | \( 1 + (24.6 - 24.6i)T - 1.33e3iT^{2} \) |
| 13 | \( 1 + (-43.7 - 43.7i)T + 2.19e3iT^{2} \) |
| 17 | \( 1 + 128.T + 4.91e3T^{2} \) |
| 19 | \( 1 + (36.8 + 36.8i)T + 6.85e3iT^{2} \) |
| 23 | \( 1 + 97.8iT - 1.21e4T^{2} \) |
| 29 | \( 1 + (70.2 + 70.2i)T + 2.43e4iT^{2} \) |
| 31 | \( 1 + 280.T + 2.97e4T^{2} \) |
| 37 | \( 1 + (85.9 - 85.9i)T - 5.06e4iT^{2} \) |
| 41 | \( 1 + 153. iT - 6.89e4T^{2} \) |
| 43 | \( 1 + (14.1 - 14.1i)T - 7.95e4iT^{2} \) |
| 47 | \( 1 - 318.T + 1.03e5T^{2} \) |
| 53 | \( 1 + (233. - 233. i)T - 1.48e5iT^{2} \) |
| 59 | \( 1 + (-46.8 + 46.8i)T - 2.05e5iT^{2} \) |
| 61 | \( 1 + (36.7 + 36.7i)T + 2.26e5iT^{2} \) |
| 67 | \( 1 + (-122. - 122. i)T + 3.00e5iT^{2} \) |
| 71 | \( 1 - 268. iT - 3.57e5T^{2} \) |
| 73 | \( 1 - 774. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 30.1T + 4.93e5T^{2} \) |
| 83 | \( 1 + (294. + 294. i)T + 5.71e5iT^{2} \) |
| 89 | \( 1 - 156. iT - 7.04e5T^{2} \) |
| 97 | \( 1 - 485.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.75143751002728509437769948423, −9.413626357284870180138902857894, −8.978694487276565074516352616770, −8.461718463565912113700226378326, −6.89107029413590826124177321948, −5.99295925856097923965058943565, −5.21735902062457532845685815278, −4.29269112632492635992867708169, −2.39939852224381116731324683407, −1.86615124631906220999749332992,
0.24943302540183207156266049285, 1.76386404896364635325919520202, 3.18452609214920048418644077179, 4.05736282485764127876781699706, 5.47580044841364200468167317856, 6.39059397337915615646371648661, 7.18295017455935816466623610332, 8.069973628156804297394753345458, 9.174668308755412808374540786130, 10.27712450874474515989382516202