Properties

Label 576.145
Modulus $576$
Conductor $16$
Order $4$
Real no
Primitive no
Minimal no
Parity even

Related objects

Learn more

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(576, base_ring=CyclotomicField(4))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,3,0]))
 
pari: [g,chi] = znchar(Mod(145,576))
 

Basic properties

Modulus: \(576\)
Conductor: \(16\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(4\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{16}(13,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 576.k

\(\chi_{576}(145,\cdot)\) \(\chi_{576}(433,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\sqrt{-1}) \)
Fixed field: \(\Q(\zeta_{16})^+\)

Values on generators

\((127,325,65)\) → \((1,-i,1)\)

Values

\(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)
\(1\)\(1\)\(-i\)\(-1\)\(-i\)\(i\)\(1\)\(i\)\(-1\)\(-1\)\(i\)\(1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 576 }(145,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 576 }(145,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 576 }(145,·),\chi_{ 576 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 576 }(145,·)) \;\) at \(\; a,b = \) e.g. 1,2