L(s) = 1 | + (−1 − 1.73i)3-s + (0.5 − 0.866i)5-s + (−2 − 1.73i)7-s + (−0.499 + 0.866i)9-s + (−0.5 − 0.866i)11-s − 3·13-s − 1.99·15-s + (1 + 1.73i)17-s + (−2.5 + 4.33i)19-s + (−0.999 + 5.19i)21-s + (3.5 − 6.06i)23-s + (−0.499 − 0.866i)25-s − 4.00·27-s − 6·29-s + (2 + 3.46i)31-s + ⋯ |
L(s) = 1 | + (−0.577 − 0.999i)3-s + (0.223 − 0.387i)5-s + (−0.755 − 0.654i)7-s + (−0.166 + 0.288i)9-s + (−0.150 − 0.261i)11-s − 0.832·13-s − 0.516·15-s + (0.242 + 0.420i)17-s + (−0.573 + 0.993i)19-s + (−0.218 + 1.13i)21-s + (0.729 − 1.26i)23-s + (−0.0999 − 0.173i)25-s − 0.769·27-s − 1.11·29-s + (0.359 + 0.622i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.991 - 0.126i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.991 - 0.126i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0379796 + 0.598479i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0379796 + 0.598479i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.5 + 0.866i)T \) |
| 7 | \( 1 + (2 + 1.73i)T \) |
good | 3 | \( 1 + (1 + 1.73i)T + (-1.5 + 2.59i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 3T + 13T^{2} \) |
| 17 | \( 1 + (-1 - 1.73i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2.5 - 4.33i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.5 + 6.06i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 6T + 29T^{2} \) |
| 31 | \( 1 + (-2 - 3.46i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-2.5 + 4.33i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 5T + 41T^{2} \) |
| 43 | \( 1 + 6T + 43T^{2} \) |
| 47 | \( 1 + (4.5 - 7.79i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (5.5 + 9.52i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-4 - 6.92i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-6 + 10.3i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2 + 3.46i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 4T + 71T^{2} \) |
| 73 | \( 1 + (6 + 10.3i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-7 + 12.1i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 4T + 83T^{2} \) |
| 89 | \( 1 + (3 - 5.19i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 6T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.31013173708852362509053686918, −9.563145600341448600458456428722, −8.381206414750783265721795482872, −7.45212033790553762367184917009, −6.61337961744199655115071334786, −5.95976495164613278238259024883, −4.75550777099518380268785354193, −3.42304438085789094046164875183, −1.81180486995721008593675261243, −0.35166946785628135357492081781,
2.40069336885489843601007881399, 3.55917109558707513692177343029, 4.87721747779059398490875531064, 5.48718857346541034839368013158, 6.60634665757079031030593726893, 7.50659217795702007653171718928, 8.929317447143132013629902357249, 9.754608468547064362839588519392, 10.09338050663779033784173778163, 11.26730211703025668035246938736