Properties

Label 2-560-7.4-c1-0-1
Degree $2$
Conductor $560$
Sign $-0.991 + 0.126i$
Analytic cond. $4.47162$
Root an. cond. $2.11462$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1 + 1.73i)3-s + (0.5 + 0.866i)5-s + (−2 + 1.73i)7-s + (−0.499 − 0.866i)9-s + (−0.5 + 0.866i)11-s − 3·13-s − 1.99·15-s + (1 − 1.73i)17-s + (−2.5 − 4.33i)19-s + (−0.999 − 5.19i)21-s + (3.5 + 6.06i)23-s + (−0.499 + 0.866i)25-s − 4.00·27-s − 6·29-s + (2 − 3.46i)31-s + ⋯
L(s)  = 1  + (−0.577 + 0.999i)3-s + (0.223 + 0.387i)5-s + (−0.755 + 0.654i)7-s + (−0.166 − 0.288i)9-s + (−0.150 + 0.261i)11-s − 0.832·13-s − 0.516·15-s + (0.242 − 0.420i)17-s + (−0.573 − 0.993i)19-s + (−0.218 − 1.13i)21-s + (0.729 + 1.26i)23-s + (−0.0999 + 0.173i)25-s − 0.769·27-s − 1.11·29-s + (0.359 − 0.622i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.991 + 0.126i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.991 + 0.126i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(560\)    =    \(2^{4} \cdot 5 \cdot 7\)
Sign: $-0.991 + 0.126i$
Analytic conductor: \(4.47162\)
Root analytic conductor: \(2.11462\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{560} (81, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 560,\ (\ :1/2),\ -0.991 + 0.126i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0379796 - 0.598479i\)
\(L(\frac12)\) \(\approx\) \(0.0379796 - 0.598479i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + (-0.5 - 0.866i)T \)
7 \( 1 + (2 - 1.73i)T \)
good3 \( 1 + (1 - 1.73i)T + (-1.5 - 2.59i)T^{2} \)
11 \( 1 + (0.5 - 0.866i)T + (-5.5 - 9.52i)T^{2} \)
13 \( 1 + 3T + 13T^{2} \)
17 \( 1 + (-1 + 1.73i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (2.5 + 4.33i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (-3.5 - 6.06i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + 6T + 29T^{2} \)
31 \( 1 + (-2 + 3.46i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + (-2.5 - 4.33i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + 5T + 41T^{2} \)
43 \( 1 + 6T + 43T^{2} \)
47 \( 1 + (4.5 + 7.79i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + (5.5 - 9.52i)T + (-26.5 - 45.8i)T^{2} \)
59 \( 1 + (-4 + 6.92i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (-6 - 10.3i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (2 - 3.46i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 - 4T + 71T^{2} \)
73 \( 1 + (6 - 10.3i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (-7 - 12.1i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 - 4T + 83T^{2} \)
89 \( 1 + (3 + 5.19i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 - 6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.26730211703025668035246938736, −10.09338050663779033784173778163, −9.754608468547064362839588519392, −8.929317447143132013629902357249, −7.50659217795702007653171718928, −6.60634665757079031030593726893, −5.48718857346541034839368013158, −4.87721747779059398490875531064, −3.55917109558707513692177343029, −2.40069336885489843601007881399, 0.35166946785628135357492081781, 1.81180486995721008593675261243, 3.42304438085789094046164875183, 4.75550777099518380268785354193, 5.95976495164613278238259024883, 6.61337961744199655115071334786, 7.45212033790553762367184917009, 8.381206414750783265721795482872, 9.563145600341448600458456428722, 10.31013173708852362509053686918

Graph of the $Z$-function along the critical line