L(s) = 1 | + (−1.32 − 0.481i)2-s + (0.689 + 0.398i)3-s + (1.53 + 1.28i)4-s + (1.03 + 1.98i)5-s + (−0.724 − 0.861i)6-s + (−1.14 + 2.38i)7-s + (−1.42 − 2.44i)8-s + (−1.18 − 2.04i)9-s + (−0.424 − 3.13i)10-s + (0.290 + 1.08i)11-s + (0.548 + 1.49i)12-s + 6.68i·13-s + (2.66 − 2.62i)14-s + (−0.0733 + 1.77i)15-s + (0.715 + 3.93i)16-s + (−0.386 − 1.44i)17-s + ⋯ |
L(s) = 1 | + (−0.940 − 0.340i)2-s + (0.398 + 0.229i)3-s + (0.767 + 0.640i)4-s + (0.463 + 0.885i)5-s + (−0.295 − 0.351i)6-s + (−0.431 + 0.902i)7-s + (−0.503 − 0.863i)8-s + (−0.394 − 0.683i)9-s + (−0.134 − 0.990i)10-s + (0.0876 + 0.326i)11-s + (0.158 + 0.431i)12-s + 1.85i·13-s + (0.713 − 0.701i)14-s + (−0.0189 + 0.459i)15-s + (0.178 + 0.983i)16-s + (−0.0937 − 0.350i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.239 - 0.970i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.239 - 0.970i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.551433 + 0.704136i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.551433 + 0.704136i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.32 + 0.481i)T \) |
| 5 | \( 1 + (-1.03 - 1.98i)T \) |
| 7 | \( 1 + (1.14 - 2.38i)T \) |
good | 3 | \( 1 + (-0.689 - 0.398i)T + (1.5 + 2.59i)T^{2} \) |
| 11 | \( 1 + (-0.290 - 1.08i)T + (-9.52 + 5.5i)T^{2} \) |
| 13 | \( 1 - 6.68iT - 13T^{2} \) |
| 17 | \( 1 + (0.386 + 1.44i)T + (-14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (-0.744 + 2.77i)T + (-16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (0.000156 - 0.000583i)T + (-19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + (4.47 - 4.47i)T - 29iT^{2} \) |
| 31 | \( 1 + (9.18 + 5.30i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-0.807 - 1.39i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 6.55T + 41T^{2} \) |
| 43 | \( 1 - 10.8iT - 43T^{2} \) |
| 47 | \( 1 + (-3.32 - 0.891i)T + (40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 + (-8.87 - 5.12i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-0.129 - 0.482i)T + (-51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (-3.79 - 1.01i)T + (52.8 + 30.5i)T^{2} \) |
| 67 | \( 1 + (3.77 + 2.17i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 5.39iT - 71T^{2} \) |
| 73 | \( 1 + (-3.40 - 12.7i)T + (-63.2 + 36.5i)T^{2} \) |
| 79 | \( 1 + (-9.43 + 5.44i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 8.40iT - 83T^{2} \) |
| 89 | \( 1 + (-7.59 + 4.38i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (11.1 - 11.1i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.11148487155736704860868009332, −9.746288331269303575326010879989, −9.291051461441830382850474440059, −8.892464334668979343248921969518, −7.40581121713583980656412668567, −6.69072582093904375574637144812, −5.86371953093801428728544418795, −3.95985000497048591663576291971, −2.86260849971999583955058157527, −2.02136176060741587974835950426,
0.63251825817145379074027997895, 2.07146688441631335368335856731, 3.52965722871751602291951132436, 5.33431119104305595927674668486, 5.86146688797048190243245617154, 7.28206633616917562259187514229, 7.938319971923118730927263353140, 8.637524148365039020596043037596, 9.531274109529938363353229331201, 10.45291534320245547198023208039