L(s) = 1 | + (−1.32 + 0.481i)2-s + (0.689 − 0.398i)3-s + (1.53 − 1.28i)4-s + (1.03 − 1.98i)5-s + (−0.724 + 0.861i)6-s + (−1.14 − 2.38i)7-s + (−1.42 + 2.44i)8-s + (−1.18 + 2.04i)9-s + (−0.424 + 3.13i)10-s + (0.290 − 1.08i)11-s + (0.548 − 1.49i)12-s − 6.68i·13-s + (2.66 + 2.62i)14-s + (−0.0733 − 1.77i)15-s + (0.715 − 3.93i)16-s + (−0.386 + 1.44i)17-s + ⋯ |
L(s) = 1 | + (−0.940 + 0.340i)2-s + (0.398 − 0.229i)3-s + (0.767 − 0.640i)4-s + (0.463 − 0.885i)5-s + (−0.295 + 0.351i)6-s + (−0.431 − 0.902i)7-s + (−0.503 + 0.863i)8-s + (−0.394 + 0.683i)9-s + (−0.134 + 0.990i)10-s + (0.0876 − 0.326i)11-s + (0.158 − 0.431i)12-s − 1.85i·13-s + (0.713 + 0.701i)14-s + (−0.0189 − 0.459i)15-s + (0.178 − 0.983i)16-s + (−0.0937 + 0.350i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.239 + 0.970i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.239 + 0.970i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.551433 - 0.704136i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.551433 - 0.704136i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.32 - 0.481i)T \) |
| 5 | \( 1 + (-1.03 + 1.98i)T \) |
| 7 | \( 1 + (1.14 + 2.38i)T \) |
good | 3 | \( 1 + (-0.689 + 0.398i)T + (1.5 - 2.59i)T^{2} \) |
| 11 | \( 1 + (-0.290 + 1.08i)T + (-9.52 - 5.5i)T^{2} \) |
| 13 | \( 1 + 6.68iT - 13T^{2} \) |
| 17 | \( 1 + (0.386 - 1.44i)T + (-14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (-0.744 - 2.77i)T + (-16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (0.000156 + 0.000583i)T + (-19.9 + 11.5i)T^{2} \) |
| 29 | \( 1 + (4.47 + 4.47i)T + 29iT^{2} \) |
| 31 | \( 1 + (9.18 - 5.30i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-0.807 + 1.39i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 6.55T + 41T^{2} \) |
| 43 | \( 1 + 10.8iT - 43T^{2} \) |
| 47 | \( 1 + (-3.32 + 0.891i)T + (40.7 - 23.5i)T^{2} \) |
| 53 | \( 1 + (-8.87 + 5.12i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-0.129 + 0.482i)T + (-51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (-3.79 + 1.01i)T + (52.8 - 30.5i)T^{2} \) |
| 67 | \( 1 + (3.77 - 2.17i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 5.39iT - 71T^{2} \) |
| 73 | \( 1 + (-3.40 + 12.7i)T + (-63.2 - 36.5i)T^{2} \) |
| 79 | \( 1 + (-9.43 - 5.44i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 8.40iT - 83T^{2} \) |
| 89 | \( 1 + (-7.59 - 4.38i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (11.1 + 11.1i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.45291534320245547198023208039, −9.531274109529938363353229331201, −8.637524148365039020596043037596, −7.938319971923118730927263353140, −7.28206633616917562259187514229, −5.86146688797048190243245617154, −5.33431119104305595927674668486, −3.52965722871751602291951132436, −2.07146688441631335368335856731, −0.63251825817145379074027997895,
2.02136176060741587974835950426, 2.86260849971999583955058157527, 3.95985000497048591663576291971, 5.86371953093801428728544418795, 6.69072582093904375574637144812, 7.40581121713583980656412668567, 8.892464334668979343248921969518, 9.291051461441830382850474440059, 9.746288331269303575326010879989, 11.11148487155736704860868009332