Properties

Label 2-552-1.1-c3-0-0
Degree $2$
Conductor $552$
Sign $1$
Analytic cond. $32.5690$
Root an. cond. $5.70693$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 15.3·5-s − 23.4·7-s + 9·9-s + 0.201·11-s − 21.5·13-s + 45.9·15-s − 117.·17-s − 143.·19-s + 70.3·21-s + 23·23-s + 109.·25-s − 27·27-s − 202.·29-s − 21.7·31-s − 0.603·33-s + 359.·35-s + 62.3·37-s + 64.7·39-s + 230.·41-s + 282.·43-s − 137.·45-s + 329.·47-s + 207.·49-s + 353.·51-s + 353.·53-s − 3.07·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.36·5-s − 1.26·7-s + 0.333·9-s + 0.00550·11-s − 0.460·13-s + 0.790·15-s − 1.67·17-s − 1.72·19-s + 0.731·21-s + 0.208·23-s + 0.876·25-s − 0.192·27-s − 1.29·29-s − 0.126·31-s − 0.00318·33-s + 1.73·35-s + 0.277·37-s + 0.266·39-s + 0.879·41-s + 1.00·43-s − 0.456·45-s + 1.02·47-s + 0.604·49-s + 0.969·51-s + 0.915·53-s − 0.00754·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 552 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 552 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(552\)    =    \(2^{3} \cdot 3 \cdot 23\)
Sign: $1$
Analytic conductor: \(32.5690\)
Root analytic conductor: \(5.70693\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 552,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.2300025504\)
\(L(\frac12)\) \(\approx\) \(0.2300025504\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 3T \)
23 \( 1 - 23T \)
good5 \( 1 + 15.3T + 125T^{2} \)
7 \( 1 + 23.4T + 343T^{2} \)
11 \( 1 - 0.201T + 1.33e3T^{2} \)
13 \( 1 + 21.5T + 2.19e3T^{2} \)
17 \( 1 + 117.T + 4.91e3T^{2} \)
19 \( 1 + 143.T + 6.85e3T^{2} \)
29 \( 1 + 202.T + 2.43e4T^{2} \)
31 \( 1 + 21.7T + 2.97e4T^{2} \)
37 \( 1 - 62.3T + 5.06e4T^{2} \)
41 \( 1 - 230.T + 6.89e4T^{2} \)
43 \( 1 - 282.T + 7.95e4T^{2} \)
47 \( 1 - 329.T + 1.03e5T^{2} \)
53 \( 1 - 353.T + 1.48e5T^{2} \)
59 \( 1 + 274.T + 2.05e5T^{2} \)
61 \( 1 + 48.8T + 2.26e5T^{2} \)
67 \( 1 + 518.T + 3.00e5T^{2} \)
71 \( 1 - 959.T + 3.57e5T^{2} \)
73 \( 1 + 887.T + 3.89e5T^{2} \)
79 \( 1 - 22.6T + 4.93e5T^{2} \)
83 \( 1 - 297.T + 5.71e5T^{2} \)
89 \( 1 + 926.T + 7.04e5T^{2} \)
97 \( 1 + 482.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.68831662653490366372437614285, −9.439676352284864840604818810118, −8.679654681053926374106984607093, −7.49477767896691336373836698121, −6.79062377395671677757698042800, −5.93958329822060651267944572901, −4.44439475525354240040167091830, −3.88199459051288060782232585828, −2.45980045672589764985553401458, −0.27931873183518841282782309369, 0.27931873183518841282782309369, 2.45980045672589764985553401458, 3.88199459051288060782232585828, 4.44439475525354240040167091830, 5.93958329822060651267944572901, 6.79062377395671677757698042800, 7.49477767896691336373836698121, 8.679654681053926374106984607093, 9.439676352284864840604818810118, 10.68831662653490366372437614285

Graph of the $Z$-function along the critical line