Properties

Label 2-550-1.1-c3-0-22
Degree $2$
Conductor $550$
Sign $1$
Analytic cond. $32.4510$
Root an. cond. $5.69658$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 9·3-s + 4·4-s − 18·6-s + 5·7-s − 8·8-s + 54·9-s + 11·11-s + 36·12-s + 36·13-s − 10·14-s + 16·16-s − 17·17-s − 108·18-s + 41·19-s + 45·21-s − 22·22-s − 44·23-s − 72·24-s − 72·26-s + 243·27-s + 20·28-s + 285·29-s − 323·31-s − 32·32-s + 99·33-s + 34·34-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.73·3-s + 1/2·4-s − 1.22·6-s + 0.269·7-s − 0.353·8-s + 2·9-s + 0.301·11-s + 0.866·12-s + 0.768·13-s − 0.190·14-s + 1/4·16-s − 0.242·17-s − 1.41·18-s + 0.495·19-s + 0.467·21-s − 0.213·22-s − 0.398·23-s − 0.612·24-s − 0.543·26-s + 1.73·27-s + 0.134·28-s + 1.82·29-s − 1.87·31-s − 0.176·32-s + 0.522·33-s + 0.171·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 550 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(550\)    =    \(2 \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(32.4510\)
Root analytic conductor: \(5.69658\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 550,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.044932116\)
\(L(\frac12)\) \(\approx\) \(3.044932116\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p T \)
5 \( 1 \)
11 \( 1 - p T \)
good3 \( 1 - p^{2} T + p^{3} T^{2} \)
7 \( 1 - 5 T + p^{3} T^{2} \)
13 \( 1 - 36 T + p^{3} T^{2} \)
17 \( 1 + p T + p^{3} T^{2} \)
19 \( 1 - 41 T + p^{3} T^{2} \)
23 \( 1 + 44 T + p^{3} T^{2} \)
29 \( 1 - 285 T + p^{3} T^{2} \)
31 \( 1 + 323 T + p^{3} T^{2} \)
37 \( 1 - 29 T + p^{3} T^{2} \)
41 \( 1 - 208 T + p^{3} T^{2} \)
43 \( 1 - 10 p T + p^{3} T^{2} \)
47 \( 1 - 336 T + p^{3} T^{2} \)
53 \( 1 - 725 T + p^{3} T^{2} \)
59 \( 1 + 648 T + p^{3} T^{2} \)
61 \( 1 + 565 T + p^{3} T^{2} \)
67 \( 1 + 748 T + p^{3} T^{2} \)
71 \( 1 + 265 T + p^{3} T^{2} \)
73 \( 1 - 602 T + p^{3} T^{2} \)
79 \( 1 - 8 T + p^{3} T^{2} \)
83 \( 1 + 708 T + p^{3} T^{2} \)
89 \( 1 - 137 T + p^{3} T^{2} \)
97 \( 1 - 44 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.15283099625317010274292571112, −9.077303289631096885403297771596, −8.862177161011463561348875830076, −7.84271928476332624326602902037, −7.27246927944236128083754679105, −6.03272539093515742649691276540, −4.34317404820961941751475694203, −3.33635158344998779968628442237, −2.30681791509935734057544406926, −1.20278049380753334928631160638, 1.20278049380753334928631160638, 2.30681791509935734057544406926, 3.33635158344998779968628442237, 4.34317404820961941751475694203, 6.03272539093515742649691276540, 7.27246927944236128083754679105, 7.84271928476332624326602902037, 8.862177161011463561348875830076, 9.077303289631096885403297771596, 10.15283099625317010274292571112

Graph of the $Z$-function along the critical line