L(s) = 1 | + (−0.707 + 0.707i)2-s + (1 − i)3-s − 1.00i·4-s + 1.41i·6-s + (−2.82 + 2.82i)7-s + (0.707 + 0.707i)8-s + i·9-s + (−3 + 1.41i)11-s + (−1.00 − 1.00i)12-s + (1.41 + 1.41i)13-s − 4.00i·14-s − 1.00·16-s + (1.41 − 1.41i)17-s + (−0.707 − 0.707i)18-s − 8.48·19-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.499i)2-s + (0.577 − 0.577i)3-s − 0.500i·4-s + 0.577i·6-s + (−1.06 + 1.06i)7-s + (0.250 + 0.250i)8-s + 0.333i·9-s + (−0.904 + 0.426i)11-s + (−0.288 − 0.288i)12-s + (0.392 + 0.392i)13-s − 1.06i·14-s − 0.250·16-s + (0.342 − 0.342i)17-s + (−0.166 − 0.166i)18-s − 1.94·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.622 - 0.782i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.622 - 0.782i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.320189 + 0.664145i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.320189 + 0.664145i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 - 0.707i)T \) |
| 5 | \( 1 \) |
| 11 | \( 1 + (3 - 1.41i)T \) |
good | 3 | \( 1 + (-1 + i)T - 3iT^{2} \) |
| 7 | \( 1 + (2.82 - 2.82i)T - 7iT^{2} \) |
| 13 | \( 1 + (-1.41 - 1.41i)T + 13iT^{2} \) |
| 17 | \( 1 + (-1.41 + 1.41i)T - 17iT^{2} \) |
| 19 | \( 1 + 8.48T + 19T^{2} \) |
| 23 | \( 1 + (3 - 3i)T - 23iT^{2} \) |
| 29 | \( 1 - 2.82T + 29T^{2} \) |
| 31 | \( 1 - 2T + 31T^{2} \) |
| 37 | \( 1 + (-1 - i)T + 37iT^{2} \) |
| 41 | \( 1 - 8.48iT - 41T^{2} \) |
| 43 | \( 1 + (-2.82 - 2.82i)T + 43iT^{2} \) |
| 47 | \( 1 + (-1 - i)T + 47iT^{2} \) |
| 53 | \( 1 + (3 - 3i)T - 53iT^{2} \) |
| 59 | \( 1 - 10iT - 59T^{2} \) |
| 61 | \( 1 + 14.1iT - 61T^{2} \) |
| 67 | \( 1 + (3 + 3i)T + 67iT^{2} \) |
| 71 | \( 1 - 8T + 71T^{2} \) |
| 73 | \( 1 + (7.07 + 7.07i)T + 73iT^{2} \) |
| 79 | \( 1 - 2.82T + 79T^{2} \) |
| 83 | \( 1 + (5.65 + 5.65i)T + 83iT^{2} \) |
| 89 | \( 1 + 6iT - 89T^{2} \) |
| 97 | \( 1 + (-7 - 7i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.89066481494742265692251709833, −10.00257622073694686361141484891, −9.167728997328724242210202507910, −8.368351734886156581992270333784, −7.71082394977352466545176247777, −6.59550377988429378278499523272, −5.93762767602204364548489402459, −4.67770975293161068727991561326, −2.91876818002377319181911031941, −2.00520936223698616739704904486,
0.43893739910340033527428080513, 2.57277604801762574354164224214, 3.60424085191885521993802342908, 4.26049608900297004599547513572, 6.02925844404980545312955001098, 6.94181453631629259622781549775, 8.183326393388477196396370272273, 8.715760402518198050695357533012, 9.835501670182246546319501293796, 10.38767582418950655769071600359