L(s) = 1 | + (0.587 + 0.809i)2-s + (3.20 − 1.04i)3-s + (−0.309 + 0.951i)4-s + (2.72 + 1.98i)6-s + (0.177 + 0.0577i)7-s + (−0.951 + 0.309i)8-s + (6.77 − 4.92i)9-s + (−0.359 + 3.29i)11-s + 3.37i·12-s + (−1.79 − 2.46i)13-s + (0.0577 + 0.177i)14-s + (−0.809 − 0.587i)16-s + (−1.73 + 2.38i)17-s + (7.96 + 2.58i)18-s + (−1.66 − 5.11i)19-s + ⋯ |
L(s) = 1 | + (0.415 + 0.572i)2-s + (1.85 − 0.601i)3-s + (−0.154 + 0.475i)4-s + (1.11 + 0.809i)6-s + (0.0672 + 0.0218i)7-s + (−0.336 + 0.109i)8-s + (2.25 − 1.64i)9-s + (−0.108 + 0.994i)11-s + 0.973i·12-s + (−0.497 − 0.684i)13-s + (0.0154 + 0.0475i)14-s + (−0.202 − 0.146i)16-s + (−0.420 + 0.578i)17-s + (1.87 + 0.610i)18-s + (−0.381 − 1.17i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.945 - 0.325i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.945 - 0.325i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.05029 + 0.509790i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.05029 + 0.509790i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.587 - 0.809i)T \) |
| 5 | \( 1 \) |
| 11 | \( 1 + (0.359 - 3.29i)T \) |
good | 3 | \( 1 + (-3.20 + 1.04i)T + (2.42 - 1.76i)T^{2} \) |
| 7 | \( 1 + (-0.177 - 0.0577i)T + (5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (1.79 + 2.46i)T + (-4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (1.73 - 2.38i)T + (-5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (1.66 + 5.11i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 - 0.115iT - 23T^{2} \) |
| 29 | \( 1 + (3.14 - 9.67i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (6.22 - 4.52i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (-6.41 - 2.08i)T + (29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (1.44 + 4.45i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + 2.27iT - 43T^{2} \) |
| 47 | \( 1 + (-6.04 + 1.96i)T + (38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (4.73 + 6.51i)T + (-16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (-0.479 + 1.47i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (0.711 + 0.516i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 - 9.03iT - 67T^{2} \) |
| 71 | \( 1 + (-0.533 - 0.387i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-2.21 - 0.720i)T + (59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (7.45 - 5.41i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-1.86 + 2.57i)T + (-25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 - 6.69T + 89T^{2} \) |
| 97 | \( 1 + (-5.20 - 7.16i)T + (-29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.65602335380081887802133801225, −9.546790435453393141899019911100, −8.861017209345158882440331937319, −8.112562771279229956167250763947, −7.18915932545896040226826545007, −6.82163148966616368332102807742, −5.10347959534660326082240831930, −3.98816986756747554714665213168, −2.95594859978079807858206327290, −1.91186523381395840065117814132,
1.94566010348849031796983271754, 2.85582070503456579755333909846, 3.89203214048352041668729428001, 4.54590132400195117287454569878, 6.01142650411619898360078255878, 7.54182716074316159518056374914, 8.191480205024924432817173291278, 9.294192457054655209820369254349, 9.584912909144362188124380194422, 10.64883161455327042426100107636