L(s) = 1 | + (−0.587 − 0.809i)2-s + (0.363 − 0.118i)3-s + (−0.309 + 0.951i)4-s + (−0.309 − 0.224i)6-s + (2.85 + 0.927i)7-s + (0.951 − 0.309i)8-s + (−2.30 + 1.67i)9-s + (−1.23 − 3.07i)11-s + 0.381i·12-s + (3.66 + 5.04i)13-s + (−0.927 − 2.85i)14-s + (−0.809 − 0.587i)16-s + (2.57 − 3.54i)17-s + (2.71 + 0.881i)18-s + (1.80 + 5.56i)19-s + ⋯ |
L(s) = 1 | + (−0.415 − 0.572i)2-s + (0.209 − 0.0681i)3-s + (−0.154 + 0.475i)4-s + (−0.126 − 0.0916i)6-s + (1.07 + 0.350i)7-s + (0.336 − 0.109i)8-s + (−0.769 + 0.559i)9-s + (−0.372 − 0.927i)11-s + 0.110i·12-s + (1.01 + 1.39i)13-s + (−0.247 − 0.762i)14-s + (−0.202 − 0.146i)16-s + (0.624 − 0.859i)17-s + (0.639 + 0.207i)18-s + (0.415 + 1.27i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.994 + 0.105i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.994 + 0.105i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.34804 - 0.0711868i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.34804 - 0.0711868i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.587 + 0.809i)T \) |
| 5 | \( 1 \) |
| 11 | \( 1 + (1.23 + 3.07i)T \) |
good | 3 | \( 1 + (-0.363 + 0.118i)T + (2.42 - 1.76i)T^{2} \) |
| 7 | \( 1 + (-2.85 - 0.927i)T + (5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (-3.66 - 5.04i)T + (-4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (-2.57 + 3.54i)T + (-5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (-1.80 - 5.56i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 - 1.85iT - 23T^{2} \) |
| 29 | \( 1 + (-0.163 + 0.502i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (-2.42 + 1.76i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (-10.0 - 3.26i)T + (29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (-1.14 - 3.52i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + 10.7iT - 43T^{2} \) |
| 47 | \( 1 + (-1.40 + 0.454i)T + (38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (-3.16 - 4.35i)T + (-16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (-2.07 + 6.37i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (7.04 + 5.11i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + 0.0901iT - 67T^{2} \) |
| 71 | \( 1 + (-10.7 - 7.83i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (10.9 + 3.57i)T + (59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (6.28 - 4.56i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-2.21 + 3.04i)T + (-25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 + 11.1T + 89T^{2} \) |
| 97 | \( 1 + (-0.555 - 0.763i)T + (-29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.07891789509792809809197423421, −9.885206140496353370004849663785, −8.893531146345398435850350190379, −8.254823100814859177156837879702, −7.62623672323635243217798513122, −6.07578560925228361386429082190, −5.15669081082101869389548425409, −3.85964921340142797049913979302, −2.64590072389035433314594575856, −1.42174216129403381702842019037,
1.05726982008618626402353127153, 2.83436660016556518220606332008, 4.29636258678203687898325710414, 5.36265172213007173423569758795, 6.21892500285645456081578266463, 7.49784269302349926812671830843, 8.098395084015489458203561130522, 8.817840247474573282782602488876, 9.873001090101870054924531527127, 10.74688773854449945343715298933