Properties

Label 550.2.ba.d.399.1
Level $550$
Weight $2$
Character 550.399
Analytic conductor $4.392$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [550,2,Mod(49,550)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(550, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("550.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 550 = 2 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 550.ba (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,2,0,2,0,0,-14,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.39177211117\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\Q(\zeta_{20})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 399.1
Root \(-0.587785 - 0.809017i\) of defining polynomial
Character \(\chi\) \(=\) 550.399
Dual form 550.2.ba.d.499.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.587785 - 0.809017i) q^{2} +(0.363271 - 0.118034i) q^{3} +(-0.309017 + 0.951057i) q^{4} +(-0.309017 - 0.224514i) q^{6} +(2.85317 + 0.927051i) q^{7} +(0.951057 - 0.309017i) q^{8} +(-2.30902 + 1.67760i) q^{9} +(-1.23607 - 3.07768i) q^{11} +0.381966i q^{12} +(3.66547 + 5.04508i) q^{13} +(-0.927051 - 2.85317i) q^{14} +(-0.809017 - 0.587785i) q^{16} +(2.57565 - 3.54508i) q^{17} +(2.71441 + 0.881966i) q^{18} +(1.80902 + 5.56758i) q^{19} +1.14590 q^{21} +(-1.76336 + 2.80902i) q^{22} +1.85410i q^{23} +(0.309017 - 0.224514i) q^{24} +(1.92705 - 5.93085i) q^{26} +(-1.31433 + 1.80902i) q^{27} +(-1.76336 + 2.42705i) q^{28} +(0.163119 - 0.502029i) q^{29} +(2.42705 - 1.76336i) q^{31} +1.00000i q^{32} +(-0.812299 - 0.972136i) q^{33} -4.38197 q^{34} +(-0.881966 - 2.71441i) q^{36} +(10.0453 + 3.26393i) q^{37} +(3.44095 - 4.73607i) q^{38} +(1.92705 + 1.40008i) q^{39} +(1.14590 + 3.52671i) q^{41} +(-0.673542 - 0.927051i) q^{42} -10.7082i q^{43} +(3.30902 - 0.224514i) q^{44} +(1.50000 - 1.08981i) q^{46} +(1.40008 - 0.454915i) q^{47} +(-0.363271 - 0.118034i) q^{48} +(1.61803 + 1.17557i) q^{49} +(0.517221 - 1.59184i) q^{51} +(-5.93085 + 1.92705i) q^{52} +(3.16344 + 4.35410i) q^{53} +2.23607 q^{54} +3.00000 q^{56} +(1.31433 + 1.80902i) q^{57} +(-0.502029 + 0.163119i) q^{58} +(2.07295 - 6.37988i) q^{59} +(-7.04508 - 5.11855i) q^{61} +(-2.85317 - 0.927051i) q^{62} +(-8.14324 + 2.64590i) q^{63} +(0.809017 - 0.587785i) q^{64} +(-0.309017 + 1.22857i) q^{66} -0.0901699i q^{67} +(2.57565 + 3.54508i) q^{68} +(0.218847 + 0.673542i) q^{69} +(10.7812 + 7.83297i) q^{71} +(-1.67760 + 2.30902i) q^{72} +(-10.9964 - 3.57295i) q^{73} +(-3.26393 - 10.0453i) q^{74} -5.85410 q^{76} +(-0.673542 - 9.92705i) q^{77} -2.38197i q^{78} +(-6.28115 + 4.56352i) q^{79} +(2.38197 - 7.33094i) q^{81} +(2.17963 - 3.00000i) q^{82} +(2.21238 - 3.04508i) q^{83} +(-0.354102 + 1.08981i) q^{84} +(-8.66312 + 6.29412i) q^{86} -0.201626i q^{87} +(-2.12663 - 2.54508i) q^{88} -11.1803 q^{89} +(5.78115 + 17.7926i) q^{91} +(-1.76336 - 0.572949i) q^{92} +(0.673542 - 0.927051i) q^{93} +(-1.19098 - 0.865300i) q^{94} +(0.118034 + 0.363271i) q^{96} +(0.555029 + 0.763932i) q^{97} -2.00000i q^{98} +(8.01722 + 5.03280i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{4} + 2 q^{6} - 14 q^{9} + 8 q^{11} + 6 q^{14} - 2 q^{16} + 10 q^{19} + 36 q^{21} - 2 q^{24} + 2 q^{26} - 30 q^{29} + 6 q^{31} - 44 q^{34} - 16 q^{36} + 2 q^{39} + 36 q^{41} + 22 q^{44} + 12 q^{46}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/550\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.587785 0.809017i −0.415627 0.572061i
\(3\) 0.363271 0.118034i 0.209735 0.0681470i −0.202265 0.979331i \(-0.564830\pi\)
0.412000 + 0.911184i \(0.364830\pi\)
\(4\) −0.309017 + 0.951057i −0.154508 + 0.475528i
\(5\) 0 0
\(6\) −0.309017 0.224514i −0.126156 0.0916575i
\(7\) 2.85317 + 0.927051i 1.07840 + 0.350392i 0.793752 0.608241i \(-0.208125\pi\)
0.284644 + 0.958633i \(0.408125\pi\)
\(8\) 0.951057 0.309017i 0.336249 0.109254i
\(9\) −2.30902 + 1.67760i −0.769672 + 0.559200i
\(10\) 0 0
\(11\) −1.23607 3.07768i −0.372689 0.927957i
\(12\) 0.381966i 0.110264i
\(13\) 3.66547 + 5.04508i 1.01662 + 1.39925i 0.914548 + 0.404478i \(0.132547\pi\)
0.102070 + 0.994777i \(0.467453\pi\)
\(14\) −0.927051 2.85317i −0.247765 0.762542i
\(15\) 0 0
\(16\) −0.809017 0.587785i −0.202254 0.146946i
\(17\) 2.57565 3.54508i 0.624688 0.859809i −0.372996 0.927833i \(-0.621669\pi\)
0.997684 + 0.0680237i \(0.0216694\pi\)
\(18\) 2.71441 + 0.881966i 0.639793 + 0.207881i
\(19\) 1.80902 + 5.56758i 0.415017 + 1.27729i 0.912236 + 0.409666i \(0.134355\pi\)
−0.497219 + 0.867625i \(0.665645\pi\)
\(20\) 0 0
\(21\) 1.14590 0.250055
\(22\) −1.76336 + 2.80902i −0.375949 + 0.598884i
\(23\) 1.85410i 0.386607i 0.981139 + 0.193303i \(0.0619202\pi\)
−0.981139 + 0.193303i \(0.938080\pi\)
\(24\) 0.309017 0.224514i 0.0630778 0.0458287i
\(25\) 0 0
\(26\) 1.92705 5.93085i 0.377926 1.16314i
\(27\) −1.31433 + 1.80902i −0.252942 + 0.348145i
\(28\) −1.76336 + 2.42705i −0.333243 + 0.458670i
\(29\) 0.163119 0.502029i 0.0302904 0.0932244i −0.934768 0.355258i \(-0.884393\pi\)
0.965059 + 0.262033i \(0.0843931\pi\)
\(30\) 0 0
\(31\) 2.42705 1.76336i 0.435911 0.316708i −0.348097 0.937459i \(-0.613172\pi\)
0.784008 + 0.620750i \(0.213172\pi\)
\(32\) 1.00000i 0.176777i
\(33\) −0.812299 0.972136i −0.141403 0.169227i
\(34\) −4.38197 −0.751501
\(35\) 0 0
\(36\) −0.881966 2.71441i −0.146994 0.452402i
\(37\) 10.0453 + 3.26393i 1.65145 + 0.536587i 0.979053 0.203607i \(-0.0652666\pi\)
0.672393 + 0.740195i \(0.265267\pi\)
\(38\) 3.44095 4.73607i 0.558197 0.768292i
\(39\) 1.92705 + 1.40008i 0.308575 + 0.224193i
\(40\) 0 0
\(41\) 1.14590 + 3.52671i 0.178959 + 0.550780i 0.999792 0.0203886i \(-0.00649033\pi\)
−0.820833 + 0.571168i \(0.806490\pi\)
\(42\) −0.673542 0.927051i −0.103930 0.143047i
\(43\) 10.7082i 1.63299i −0.577355 0.816493i \(-0.695915\pi\)
0.577355 0.816493i \(-0.304085\pi\)
\(44\) 3.30902 0.224514i 0.498853 0.0338468i
\(45\) 0 0
\(46\) 1.50000 1.08981i 0.221163 0.160684i
\(47\) 1.40008 0.454915i 0.204223 0.0663562i −0.205119 0.978737i \(-0.565758\pi\)
0.409342 + 0.912381i \(0.365758\pi\)
\(48\) −0.363271 0.118034i −0.0524337 0.0170367i
\(49\) 1.61803 + 1.17557i 0.231148 + 0.167939i
\(50\) 0 0
\(51\) 0.517221 1.59184i 0.0724254 0.222903i
\(52\) −5.93085 + 1.92705i −0.822461 + 0.267234i
\(53\) 3.16344 + 4.35410i 0.434532 + 0.598082i 0.968986 0.247116i \(-0.0794827\pi\)
−0.534454 + 0.845198i \(0.679483\pi\)
\(54\) 2.23607 0.304290
\(55\) 0 0
\(56\) 3.00000 0.400892
\(57\) 1.31433 + 1.80902i 0.174087 + 0.239610i
\(58\) −0.502029 + 0.163119i −0.0659196 + 0.0214186i
\(59\) 2.07295 6.37988i 0.269875 0.830590i −0.720655 0.693294i \(-0.756159\pi\)
0.990530 0.137296i \(-0.0438412\pi\)
\(60\) 0 0
\(61\) −7.04508 5.11855i −0.902031 0.655364i 0.0369561 0.999317i \(-0.488234\pi\)
−0.938987 + 0.343953i \(0.888234\pi\)
\(62\) −2.85317 0.927051i −0.362353 0.117736i
\(63\) −8.14324 + 2.64590i −1.02595 + 0.333352i
\(64\) 0.809017 0.587785i 0.101127 0.0734732i
\(65\) 0 0
\(66\) −0.309017 + 1.22857i −0.0380374 + 0.151227i
\(67\) 0.0901699i 0.0110160i −0.999985 0.00550801i \(-0.998247\pi\)
0.999985 0.00550801i \(-0.00175326\pi\)
\(68\) 2.57565 + 3.54508i 0.312344 + 0.429905i
\(69\) 0.218847 + 0.673542i 0.0263461 + 0.0810849i
\(70\) 0 0
\(71\) 10.7812 + 7.83297i 1.27949 + 0.929602i 0.999537 0.0304125i \(-0.00968210\pi\)
0.279950 + 0.960015i \(0.409682\pi\)
\(72\) −1.67760 + 2.30902i −0.197707 + 0.272120i
\(73\) −10.9964 3.57295i −1.28703 0.418182i −0.415980 0.909374i \(-0.636562\pi\)
−0.871052 + 0.491192i \(0.836562\pi\)
\(74\) −3.26393 10.0453i −0.379424 1.16775i
\(75\) 0 0
\(76\) −5.85410 −0.671512
\(77\) −0.673542 9.92705i −0.0767572 1.13129i
\(78\) 2.38197i 0.269705i
\(79\) −6.28115 + 4.56352i −0.706685 + 0.513437i −0.882103 0.471057i \(-0.843872\pi\)
0.175418 + 0.984494i \(0.443872\pi\)
\(80\) 0 0
\(81\) 2.38197 7.33094i 0.264663 0.814549i
\(82\) 2.17963 3.00000i 0.240700 0.331295i
\(83\) 2.21238 3.04508i 0.242841 0.334241i −0.670147 0.742228i \(-0.733769\pi\)
0.912988 + 0.407987i \(0.133769\pi\)
\(84\) −0.354102 + 1.08981i −0.0386357 + 0.118908i
\(85\) 0 0
\(86\) −8.66312 + 6.29412i −0.934168 + 0.678713i
\(87\) 0.201626i 0.0216166i
\(88\) −2.12663 2.54508i −0.226699 0.271307i
\(89\) −11.1803 −1.18511 −0.592557 0.805529i \(-0.701881\pi\)
−0.592557 + 0.805529i \(0.701881\pi\)
\(90\) 0 0
\(91\) 5.78115 + 17.7926i 0.606029 + 1.86517i
\(92\) −1.76336 0.572949i −0.183843 0.0597341i
\(93\) 0.673542 0.927051i 0.0698430 0.0961307i
\(94\) −1.19098 0.865300i −0.122841 0.0892489i
\(95\) 0 0
\(96\) 0.118034 + 0.363271i 0.0120468 + 0.0370762i
\(97\) 0.555029 + 0.763932i 0.0563547 + 0.0775655i 0.836264 0.548327i \(-0.184735\pi\)
−0.779910 + 0.625892i \(0.784735\pi\)
\(98\) 2.00000i 0.202031i
\(99\) 8.01722 + 5.03280i 0.805761 + 0.505815i
\(100\) 0 0
\(101\) −10.6631 + 7.74721i −1.06102 + 0.770876i −0.974277 0.225355i \(-0.927646\pi\)
−0.0867432 + 0.996231i \(0.527646\pi\)
\(102\) −1.59184 + 0.517221i −0.157616 + 0.0512125i
\(103\) −0.673542 0.218847i −0.0663661 0.0215636i 0.275646 0.961259i \(-0.411108\pi\)
−0.342012 + 0.939696i \(0.611108\pi\)
\(104\) 5.04508 + 3.66547i 0.494711 + 0.359429i
\(105\) 0 0
\(106\) 1.66312 5.11855i 0.161536 0.497158i
\(107\) −0.726543 + 0.236068i −0.0702375 + 0.0228216i −0.343925 0.938997i \(-0.611757\pi\)
0.273687 + 0.961819i \(0.411757\pi\)
\(108\) −1.31433 1.80902i −0.126471 0.174073i
\(109\) 9.14590 0.876018 0.438009 0.898971i \(-0.355684\pi\)
0.438009 + 0.898971i \(0.355684\pi\)
\(110\) 0 0
\(111\) 4.03444 0.382932
\(112\) −1.76336 2.42705i −0.166621 0.229335i
\(113\) −3.57971 + 1.16312i −0.336751 + 0.109417i −0.472511 0.881325i \(-0.656652\pi\)
0.135760 + 0.990742i \(0.456652\pi\)
\(114\) 0.690983 2.12663i 0.0647165 0.199177i
\(115\) 0 0
\(116\) 0.427051 + 0.310271i 0.0396507 + 0.0288079i
\(117\) −16.9273 5.50000i −1.56493 0.508475i
\(118\) −6.37988 + 2.07295i −0.587316 + 0.190830i
\(119\) 10.6353 7.72696i 0.974932 0.708330i
\(120\) 0 0
\(121\) −7.94427 + 7.60845i −0.722207 + 0.691677i
\(122\) 8.70820i 0.788404i
\(123\) 0.832544 + 1.14590i 0.0750679 + 0.103322i
\(124\) 0.927051 + 2.85317i 0.0832516 + 0.256222i
\(125\) 0 0
\(126\) 6.92705 + 5.03280i 0.617111 + 0.448357i
\(127\) 1.26133 1.73607i 0.111925 0.154051i −0.749380 0.662141i \(-0.769648\pi\)
0.861304 + 0.508090i \(0.169648\pi\)
\(128\) −0.951057 0.309017i −0.0840623 0.0273135i
\(129\) −1.26393 3.88998i −0.111283 0.342494i
\(130\) 0 0
\(131\) −20.5623 −1.79654 −0.898269 0.439447i \(-0.855174\pi\)
−0.898269 + 0.439447i \(0.855174\pi\)
\(132\) 1.17557 0.472136i 0.102320 0.0410942i
\(133\) 17.5623i 1.52285i
\(134\) −0.0729490 + 0.0530006i −0.00630184 + 0.00457855i
\(135\) 0 0
\(136\) 1.35410 4.16750i 0.116113 0.357360i
\(137\) −1.86936 + 2.57295i −0.159710 + 0.219822i −0.881371 0.472425i \(-0.843379\pi\)
0.721661 + 0.692246i \(0.243379\pi\)
\(138\) 0.416272 0.572949i 0.0354354 0.0487727i
\(139\) 2.50000 7.69421i 0.212047 0.652614i −0.787303 0.616566i \(-0.788523\pi\)
0.999350 0.0360478i \(-0.0114769\pi\)
\(140\) 0 0
\(141\) 0.454915 0.330515i 0.0383108 0.0278344i
\(142\) 13.3262i 1.11831i
\(143\) 10.9964 17.5172i 0.919566 1.46486i
\(144\) 2.85410 0.237842
\(145\) 0 0
\(146\) 3.57295 + 10.9964i 0.295699 + 0.910069i
\(147\) 0.726543 + 0.236068i 0.0599242 + 0.0194706i
\(148\) −6.20837 + 8.54508i −0.510325 + 0.702402i
\(149\) −17.1353 12.4495i −1.40377 1.01990i −0.994191 0.107630i \(-0.965674\pi\)
−0.409584 0.912273i \(-0.634326\pi\)
\(150\) 0 0
\(151\) 6.20820 + 19.1069i 0.505216 + 1.55490i 0.800406 + 0.599458i \(0.204617\pi\)
−0.295190 + 0.955439i \(0.595383\pi\)
\(152\) 3.44095 + 4.73607i 0.279098 + 0.384146i
\(153\) 12.5066i 1.01110i
\(154\) −7.63525 + 6.37988i −0.615266 + 0.514105i
\(155\) 0 0
\(156\) −1.92705 + 1.40008i −0.154288 + 0.112096i
\(157\) −18.7436 + 6.09017i −1.49590 + 0.486048i −0.938820 0.344408i \(-0.888080\pi\)
−0.557083 + 0.830457i \(0.688080\pi\)
\(158\) 7.38394 + 2.39919i 0.587435 + 0.190869i
\(159\) 1.66312 + 1.20833i 0.131894 + 0.0958265i
\(160\) 0 0
\(161\) −1.71885 + 5.29007i −0.135464 + 0.416916i
\(162\) −7.33094 + 2.38197i −0.575973 + 0.187145i
\(163\) −7.15942 9.85410i −0.560769 0.771833i 0.430655 0.902517i \(-0.358283\pi\)
−0.991424 + 0.130684i \(0.958283\pi\)
\(164\) −3.70820 −0.289562
\(165\) 0 0
\(166\) −3.76393 −0.292138
\(167\) 3.49396 + 4.80902i 0.270370 + 0.372133i 0.922515 0.385962i \(-0.126130\pi\)
−0.652144 + 0.758095i \(0.726130\pi\)
\(168\) 1.08981 0.354102i 0.0840810 0.0273196i
\(169\) −8.00000 + 24.6215i −0.615385 + 1.89396i
\(170\) 0 0
\(171\) −13.5172 9.82084i −1.03369 0.751018i
\(172\) 10.1841 + 3.30902i 0.776531 + 0.252310i
\(173\) −8.14324 + 2.64590i −0.619119 + 0.201164i −0.601749 0.798685i \(-0.705529\pi\)
−0.0173698 + 0.999849i \(0.505529\pi\)
\(174\) −0.163119 + 0.118513i −0.0123660 + 0.00898444i
\(175\) 0 0
\(176\) −0.809017 + 3.21644i −0.0609820 + 0.242448i
\(177\) 2.56231i 0.192595i
\(178\) 6.57164 + 9.04508i 0.492565 + 0.677958i
\(179\) −3.29180 10.1311i −0.246040 0.757234i −0.995464 0.0951432i \(-0.969669\pi\)
0.749423 0.662091i \(-0.230331\pi\)
\(180\) 0 0
\(181\) −9.70820 7.05342i −0.721605 0.524277i 0.165292 0.986245i \(-0.447144\pi\)
−0.886897 + 0.461968i \(0.847144\pi\)
\(182\) 10.9964 15.1353i 0.815108 1.12190i
\(183\) −3.16344 1.02786i −0.233848 0.0759819i
\(184\) 0.572949 + 1.76336i 0.0422384 + 0.129996i
\(185\) 0 0
\(186\) −1.14590 −0.0840213
\(187\) −14.0943 3.54508i −1.03068 0.259242i
\(188\) 1.47214i 0.107367i
\(189\) −5.42705 + 3.94298i −0.394760 + 0.286810i
\(190\) 0 0
\(191\) 7.42705 22.8581i 0.537403 1.65395i −0.200997 0.979592i \(-0.564418\pi\)
0.738400 0.674363i \(-0.235582\pi\)
\(192\) 0.224514 0.309017i 0.0162029 0.0223014i
\(193\) 1.08981 1.50000i 0.0784465 0.107972i −0.767990 0.640461i \(-0.778743\pi\)
0.846437 + 0.532489i \(0.178743\pi\)
\(194\) 0.291796 0.898056i 0.0209497 0.0644767i
\(195\) 0 0
\(196\) −1.61803 + 1.17557i −0.115574 + 0.0839693i
\(197\) 4.76393i 0.339416i −0.985494 0.169708i \(-0.945718\pi\)
0.985494 0.169708i \(-0.0542825\pi\)
\(198\) −0.640786 9.44427i −0.0455387 0.671175i
\(199\) 3.94427 0.279602 0.139801 0.990180i \(-0.455354\pi\)
0.139801 + 0.990180i \(0.455354\pi\)
\(200\) 0 0
\(201\) −0.0106431 0.0327561i −0.000750708 0.00231044i
\(202\) 12.5352 + 4.07295i 0.881977 + 0.286572i
\(203\) 0.930812 1.28115i 0.0653302 0.0899193i
\(204\) 1.35410 + 0.983813i 0.0948061 + 0.0688807i
\(205\) 0 0
\(206\) 0.218847 + 0.673542i 0.0152478 + 0.0469279i
\(207\) −3.11044 4.28115i −0.216191 0.297561i
\(208\) 6.23607i 0.432394i
\(209\) 14.8992 12.4495i 1.03060 0.861149i
\(210\) 0 0
\(211\) 22.0623 16.0292i 1.51883 1.10350i 0.556769 0.830667i \(-0.312041\pi\)
0.962063 0.272829i \(-0.0879592\pi\)
\(212\) −5.11855 + 1.66312i −0.351544 + 0.114223i
\(213\) 4.84104 + 1.57295i 0.331703 + 0.107777i
\(214\) 0.618034 + 0.449028i 0.0422479 + 0.0306949i
\(215\) 0 0
\(216\) −0.690983 + 2.12663i −0.0470154 + 0.144699i
\(217\) 8.55951 2.78115i 0.581057 0.188797i
\(218\) −5.37582 7.39919i −0.364097 0.501136i
\(219\) −4.41641 −0.298433
\(220\) 0 0
\(221\) 27.3262 1.83816
\(222\) −2.37139 3.26393i −0.159157 0.219061i
\(223\) 19.6947 6.39919i 1.31885 0.428521i 0.436752 0.899582i \(-0.356129\pi\)
0.882101 + 0.471061i \(0.156129\pi\)
\(224\) −0.927051 + 2.85317i −0.0619412 + 0.190635i
\(225\) 0 0
\(226\) 3.04508 + 2.21238i 0.202556 + 0.147166i
\(227\) 17.4293 + 5.66312i 1.15682 + 0.375874i 0.823709 0.567012i \(-0.191901\pi\)
0.333113 + 0.942887i \(0.391901\pi\)
\(228\) −2.12663 + 0.690983i −0.140839 + 0.0457615i
\(229\) 0.427051 0.310271i 0.0282203 0.0205033i −0.573586 0.819146i \(-0.694448\pi\)
0.601806 + 0.798642i \(0.294448\pi\)
\(230\) 0 0
\(231\) −1.41641 3.52671i −0.0931928 0.232041i
\(232\) 0.527864i 0.0346560i
\(233\) 9.04129 + 12.4443i 0.592315 + 0.815251i 0.994978 0.100097i \(-0.0319153\pi\)
−0.402663 + 0.915348i \(0.631915\pi\)
\(234\) 5.50000 + 16.9273i 0.359546 + 1.10657i
\(235\) 0 0
\(236\) 5.42705 + 3.94298i 0.353271 + 0.256666i
\(237\) −1.74311 + 2.39919i −0.113227 + 0.155844i
\(238\) −12.5025 4.06231i −0.810416 0.263320i
\(239\) −4.83688 14.8864i −0.312872 0.962920i −0.976622 0.214966i \(-0.931036\pi\)
0.663750 0.747955i \(-0.268964\pi\)
\(240\) 0 0
\(241\) −18.0000 −1.15948 −0.579741 0.814801i \(-0.696846\pi\)
−0.579741 + 0.814801i \(0.696846\pi\)
\(242\) 10.8249 + 1.95492i 0.695850 + 0.125667i
\(243\) 9.65248i 0.619207i
\(244\) 7.04508 5.11855i 0.451015 0.327682i
\(245\) 0 0
\(246\) 0.437694 1.34708i 0.0279064 0.0858869i
\(247\) −21.4580 + 29.5344i −1.36534 + 1.87923i
\(248\) 1.76336 2.42705i 0.111973 0.154118i
\(249\) 0.444272 1.36733i 0.0281546 0.0866509i
\(250\) 0 0
\(251\) 11.7361 8.52675i 0.740774 0.538204i −0.152179 0.988353i \(-0.548629\pi\)
0.892953 + 0.450149i \(0.148629\pi\)
\(252\) 8.56231i 0.539375i
\(253\) 5.70634 2.29180i 0.358754 0.144084i
\(254\) −2.14590 −0.134646
\(255\) 0 0
\(256\) 0.309017 + 0.951057i 0.0193136 + 0.0594410i
\(257\) 30.1891 + 9.80902i 1.88314 + 0.611870i 0.985107 + 0.171945i \(0.0550051\pi\)
0.898035 + 0.439925i \(0.144995\pi\)
\(258\) −2.40414 + 3.30902i −0.149675 + 0.206010i
\(259\) 25.6353 + 18.6251i 1.59290 + 1.15731i
\(260\) 0 0
\(261\) 0.465558 + 1.43284i 0.0288173 + 0.0886906i
\(262\) 12.0862 + 16.6353i 0.746689 + 1.02773i
\(263\) 11.0344i 0.680413i −0.940351 0.340206i \(-0.889503\pi\)
0.940351 0.340206i \(-0.110497\pi\)
\(264\) −1.07295 0.673542i −0.0660354 0.0414536i
\(265\) 0 0
\(266\) 14.2082 10.3229i 0.871161 0.632935i
\(267\) −4.06150 + 1.31966i −0.248560 + 0.0807619i
\(268\) 0.0857567 + 0.0278640i 0.00523842 + 0.00170207i
\(269\) −14.6353 10.6331i −0.892327 0.648314i 0.0441565 0.999025i \(-0.485940\pi\)
−0.936484 + 0.350711i \(0.885940\pi\)
\(270\) 0 0
\(271\) 5.02786 15.4742i 0.305421 0.939989i −0.674099 0.738641i \(-0.735468\pi\)
0.979520 0.201348i \(-0.0645322\pi\)
\(272\) −4.16750 + 1.35410i −0.252692 + 0.0821045i
\(273\) 4.20025 + 5.78115i 0.254211 + 0.349891i
\(274\) 3.18034 0.192131
\(275\) 0 0
\(276\) −0.708204 −0.0426289
\(277\) −3.69822 5.09017i −0.222205 0.305839i 0.683331 0.730109i \(-0.260531\pi\)
−0.905536 + 0.424270i \(0.860531\pi\)
\(278\) −7.69421 + 2.50000i −0.461468 + 0.149940i
\(279\) −2.64590 + 8.14324i −0.158406 + 0.487523i
\(280\) 0 0
\(281\) −14.7082 10.6861i −0.877418 0.637481i 0.0551492 0.998478i \(-0.482437\pi\)
−0.932567 + 0.360997i \(0.882437\pi\)
\(282\) −0.534785 0.173762i −0.0318460 0.0103474i
\(283\) −17.4620 + 5.67376i −1.03801 + 0.337270i −0.777953 0.628323i \(-0.783742\pi\)
−0.260058 + 0.965593i \(0.583742\pi\)
\(284\) −10.7812 + 7.83297i −0.639744 + 0.464801i
\(285\) 0 0
\(286\) −20.6353 + 1.40008i −1.22019 + 0.0827887i
\(287\) 11.1246i 0.656665i
\(288\) −1.67760 2.30902i −0.0988535 0.136060i
\(289\) −0.680340 2.09387i −0.0400200 0.123169i
\(290\) 0 0
\(291\) 0.291796 + 0.212002i 0.0171054 + 0.0124278i
\(292\) 6.79615 9.35410i 0.397715 0.547407i
\(293\) 18.1558 + 5.89919i 1.06067 + 0.344634i 0.786849 0.617145i \(-0.211711\pi\)
0.273826 + 0.961779i \(0.411711\pi\)
\(294\) −0.236068 0.726543i −0.0137678 0.0423728i
\(295\) 0 0
\(296\) 10.5623 0.613922
\(297\) 7.19218 + 1.80902i 0.417333 + 0.104970i
\(298\) 21.1803i 1.22694i
\(299\) −9.35410 + 6.79615i −0.540962 + 0.393032i
\(300\) 0 0
\(301\) 9.92705 30.5523i 0.572186 1.76101i
\(302\) 11.8087 16.2533i 0.679515 0.935272i
\(303\) −2.95917 + 4.07295i −0.170000 + 0.233985i
\(304\) 1.80902 5.56758i 0.103754 0.319323i
\(305\) 0 0
\(306\) 10.1180 7.35118i 0.578410 0.420239i
\(307\) 9.56231i 0.545750i −0.962050 0.272875i \(-0.912026\pi\)
0.962050 0.272875i \(-0.0879745\pi\)
\(308\) 9.64932 + 2.42705i 0.549821 + 0.138294i
\(309\) −0.270510 −0.0153888
\(310\) 0 0
\(311\) 0.781153 + 2.40414i 0.0442951 + 0.136326i 0.970758 0.240059i \(-0.0771668\pi\)
−0.926463 + 0.376385i \(0.877167\pi\)
\(312\) 2.26538 + 0.736068i 0.128252 + 0.0416716i
\(313\) 11.7229 16.1353i 0.662620 0.912019i −0.336944 0.941525i \(-0.609393\pi\)
0.999565 + 0.0295060i \(0.00939343\pi\)
\(314\) 15.9443 + 11.5842i 0.899787 + 0.653734i
\(315\) 0 0
\(316\) −2.39919 7.38394i −0.134965 0.415379i
\(317\) −18.6579 25.6803i −1.04793 1.44235i −0.890590 0.454807i \(-0.849708\pi\)
−0.157340 0.987545i \(-0.550292\pi\)
\(318\) 2.05573i 0.115280i
\(319\) −1.74671 + 0.118513i −0.0977970 + 0.00663545i
\(320\) 0 0
\(321\) −0.236068 + 0.171513i −0.0131760 + 0.00957295i
\(322\) 5.29007 1.71885i 0.294804 0.0957876i
\(323\) 24.3970 + 7.92705i 1.35748 + 0.441073i
\(324\) 6.23607 + 4.53077i 0.346448 + 0.251709i
\(325\) 0 0
\(326\) −3.76393 + 11.5842i −0.208465 + 0.641589i
\(327\) 3.32244 1.07953i 0.183731 0.0596980i
\(328\) 2.17963 + 3.00000i 0.120350 + 0.165647i
\(329\) 4.41641 0.243484
\(330\) 0 0
\(331\) 12.0000 0.659580 0.329790 0.944054i \(-0.393022\pi\)
0.329790 + 0.944054i \(0.393022\pi\)
\(332\) 2.21238 + 3.04508i 0.121420 + 0.167121i
\(333\) −28.6705 + 9.31559i −1.57113 + 0.510491i
\(334\) 1.83688 5.65334i 0.100510 0.309337i
\(335\) 0 0
\(336\) −0.927051 0.673542i −0.0505748 0.0367447i
\(337\) 1.22857 + 0.399187i 0.0669245 + 0.0217451i 0.342288 0.939595i \(-0.388798\pi\)
−0.275363 + 0.961340i \(0.588798\pi\)
\(338\) 24.6215 8.00000i 1.33923 0.435143i
\(339\) −1.16312 + 0.845055i −0.0631720 + 0.0458971i
\(340\) 0 0
\(341\) −8.42705 5.29007i −0.456350 0.286473i
\(342\) 16.7082i 0.903476i
\(343\) −8.81678 12.1353i −0.476061 0.655242i
\(344\) −3.30902 10.1841i −0.178410 0.549090i
\(345\) 0 0
\(346\) 6.92705 + 5.03280i 0.372401 + 0.270565i
\(347\) −8.55951 + 11.7812i −0.459498 + 0.632445i −0.974405 0.224801i \(-0.927827\pi\)
0.514906 + 0.857247i \(0.327827\pi\)
\(348\) 0.191758 + 0.0623059i 0.0102793 + 0.00333995i
\(349\) 2.23607 + 6.88191i 0.119694 + 0.368380i 0.992897 0.118976i \(-0.0379612\pi\)
−0.873203 + 0.487356i \(0.837961\pi\)
\(350\) 0 0
\(351\) −13.9443 −0.744290
\(352\) 3.07768 1.23607i 0.164041 0.0658826i
\(353\) 23.5623i 1.25410i 0.778981 + 0.627048i \(0.215737\pi\)
−0.778981 + 0.627048i \(0.784263\pi\)
\(354\) −2.07295 + 1.50609i −0.110176 + 0.0800475i
\(355\) 0 0
\(356\) 3.45492 10.6331i 0.183110 0.563555i
\(357\) 2.95144 4.06231i 0.156207 0.215000i
\(358\) −6.26137 + 8.61803i −0.330924 + 0.455477i
\(359\) −2.76393 + 8.50651i −0.145875 + 0.448956i −0.997122 0.0758078i \(-0.975846\pi\)
0.851248 + 0.524764i \(0.175846\pi\)
\(360\) 0 0
\(361\) −12.3541 + 8.97578i −0.650216 + 0.472409i
\(362\) 12.0000i 0.630706i
\(363\) −1.98787 + 3.70163i −0.104336 + 0.194285i
\(364\) −18.7082 −0.980576
\(365\) 0 0
\(366\) 1.02786 + 3.16344i 0.0537273 + 0.165356i
\(367\) 9.23305 + 3.00000i 0.481961 + 0.156599i 0.539913 0.841721i \(-0.318457\pi\)
−0.0579520 + 0.998319i \(0.518457\pi\)
\(368\) 1.08981 1.50000i 0.0568105 0.0781929i
\(369\) −8.56231 6.22088i −0.445736 0.323846i
\(370\) 0 0
\(371\) 4.98936 + 15.3557i 0.259035 + 0.797226i
\(372\) 0.673542 + 0.927051i 0.0349215 + 0.0480654i
\(373\) 29.9787i 1.55224i −0.630586 0.776119i \(-0.717185\pi\)
0.630586 0.776119i \(-0.282815\pi\)
\(374\) 5.41641 + 13.4863i 0.280076 + 0.697360i
\(375\) 0 0
\(376\) 1.19098 0.865300i 0.0614203 0.0446244i
\(377\) 3.13068 1.01722i 0.161238 0.0523895i
\(378\) 6.37988 + 2.07295i 0.328146 + 0.106621i
\(379\) −6.54508 4.75528i −0.336198 0.244262i 0.406858 0.913492i \(-0.366624\pi\)
−0.743056 + 0.669229i \(0.766624\pi\)
\(380\) 0 0
\(381\) 0.253289 0.779543i 0.0129764 0.0399372i
\(382\) −22.8581 + 7.42705i −1.16952 + 0.380001i
\(383\) 3.73871 + 5.14590i 0.191039 + 0.262943i 0.893783 0.448500i \(-0.148042\pi\)
−0.702743 + 0.711444i \(0.748042\pi\)
\(384\) −0.381966 −0.0194921
\(385\) 0 0
\(386\) −1.85410 −0.0943713
\(387\) 17.9641 + 24.7254i 0.913165 + 1.25686i
\(388\) −0.898056 + 0.291796i −0.0455919 + 0.0148137i
\(389\) 7.92705 24.3970i 0.401917 1.23697i −0.521524 0.853236i \(-0.674636\pi\)
0.923442 0.383738i \(-0.125364\pi\)
\(390\) 0 0
\(391\) 6.57295 + 4.77553i 0.332408 + 0.241509i
\(392\) 1.90211 + 0.618034i 0.0960712 + 0.0312154i
\(393\) −7.46969 + 2.42705i −0.376796 + 0.122429i
\(394\) −3.85410 + 2.80017i −0.194167 + 0.141070i
\(395\) 0 0
\(396\) −7.26393 + 6.06961i −0.365026 + 0.305009i
\(397\) 6.41641i 0.322030i 0.986952 + 0.161015i \(0.0514768\pi\)
−0.986952 + 0.161015i \(0.948523\pi\)
\(398\) −2.31838 3.19098i −0.116210 0.159950i
\(399\) 2.07295 + 6.37988i 0.103777 + 0.319394i
\(400\) 0 0
\(401\) 12.4894 + 9.07405i 0.623689 + 0.453136i 0.854208 0.519931i \(-0.174042\pi\)
−0.230519 + 0.973068i \(0.574042\pi\)
\(402\) −0.0202444 + 0.0278640i −0.00100970 + 0.00138973i
\(403\) 17.7926 + 5.78115i 0.886311 + 0.287980i
\(404\) −4.07295 12.5352i −0.202637 0.623652i
\(405\) 0 0
\(406\) −1.58359 −0.0785924
\(407\) −2.37139 34.9508i −0.117545 1.73245i
\(408\) 1.67376i 0.0828636i
\(409\) −16.4443 + 11.9475i −0.813117 + 0.590764i −0.914733 0.404060i \(-0.867599\pi\)
0.101616 + 0.994824i \(0.467599\pi\)
\(410\) 0 0
\(411\) −0.375388 + 1.15533i −0.0185165 + 0.0569880i
\(412\) 0.416272 0.572949i 0.0205082 0.0282272i
\(413\) 11.8290 16.2812i 0.582065 0.801143i
\(414\) −1.63525 + 5.03280i −0.0803684 + 0.247348i
\(415\) 0 0
\(416\) −5.04508 + 3.66547i −0.247356 + 0.179714i
\(417\) 3.09017i 0.151326i
\(418\) −18.8294 4.73607i −0.920975 0.231649i
\(419\) 23.9443 1.16975 0.584877 0.811122i \(-0.301143\pi\)
0.584877 + 0.811122i \(0.301143\pi\)
\(420\) 0 0
\(421\) −1.39261 4.28601i −0.0678716 0.208887i 0.911368 0.411592i \(-0.135027\pi\)
−0.979240 + 0.202704i \(0.935027\pi\)
\(422\) −25.9358 8.42705i −1.26253 0.410222i
\(423\) −2.46965 + 3.39919i −0.120079 + 0.165274i
\(424\) 4.35410 + 3.16344i 0.211454 + 0.153630i
\(425\) 0 0
\(426\) −1.57295 4.84104i −0.0762096 0.234549i
\(427\) −15.3557 21.1353i −0.743113 1.02281i
\(428\) 0.763932i 0.0369260i
\(429\) 1.92705 7.66145i 0.0930389 0.369898i
\(430\) 0 0
\(431\) −19.6074 + 14.2456i −0.944455 + 0.686187i −0.949489 0.313801i \(-0.898398\pi\)
0.00503407 + 0.999987i \(0.498398\pi\)
\(432\) 2.12663 0.690983i 0.102317 0.0332449i
\(433\) 10.9637 + 3.56231i 0.526879 + 0.171193i 0.560365 0.828246i \(-0.310661\pi\)
−0.0334857 + 0.999439i \(0.510661\pi\)
\(434\) −7.28115 5.29007i −0.349507 0.253931i
\(435\) 0 0
\(436\) −2.82624 + 8.69827i −0.135352 + 0.416571i
\(437\) −10.3229 + 3.35410i −0.493810 + 0.160448i
\(438\) 2.59590 + 3.57295i 0.124037 + 0.170722i
\(439\) 3.94427 0.188250 0.0941249 0.995560i \(-0.469995\pi\)
0.0941249 + 0.995560i \(0.469995\pi\)
\(440\) 0 0
\(441\) −5.70820 −0.271819
\(442\) −16.0620 22.1074i −0.763990 1.05154i
\(443\) −16.5312 + 5.37132i −0.785423 + 0.255199i −0.674154 0.738591i \(-0.735491\pi\)
−0.111269 + 0.993790i \(0.535491\pi\)
\(444\) −1.24671 + 3.83698i −0.0591663 + 0.182095i
\(445\) 0 0
\(446\) −16.7533 12.1720i −0.793291 0.576360i
\(447\) −7.69421 2.50000i −0.363924 0.118246i
\(448\) 2.85317 0.927051i 0.134800 0.0437990i
\(449\) −21.1803 + 15.3884i −0.999562 + 0.726224i −0.961994 0.273070i \(-0.911961\pi\)
−0.0375678 + 0.999294i \(0.511961\pi\)
\(450\) 0 0
\(451\) 9.43769 7.88597i 0.444404 0.371336i
\(452\) 3.76393i 0.177040i
\(453\) 4.51052 + 6.20820i 0.211923 + 0.291687i
\(454\) −5.66312 17.4293i −0.265783 0.817997i
\(455\) 0 0
\(456\) 1.80902 + 1.31433i 0.0847150 + 0.0615490i
\(457\) −3.73098 + 5.13525i −0.174528 + 0.240217i −0.887315 0.461163i \(-0.847432\pi\)
0.712788 + 0.701380i \(0.247432\pi\)
\(458\) −0.502029 0.163119i −0.0234583 0.00762205i
\(459\) 3.02786 + 9.31881i 0.141329 + 0.434965i
\(460\) 0 0
\(461\) −7.47214 −0.348012 −0.174006 0.984745i \(-0.555671\pi\)
−0.174006 + 0.984745i \(0.555671\pi\)
\(462\) −2.02063 + 3.21885i −0.0940080 + 0.149754i
\(463\) 4.41641i 0.205248i 0.994720 + 0.102624i \(0.0327238\pi\)
−0.994720 + 0.102624i \(0.967276\pi\)
\(464\) −0.427051 + 0.310271i −0.0198253 + 0.0144040i
\(465\) 0 0
\(466\) 4.75329 14.6291i 0.220192 0.677681i
\(467\) 8.95554 12.3262i 0.414413 0.570390i −0.549875 0.835247i \(-0.685325\pi\)
0.964288 + 0.264857i \(0.0853247\pi\)
\(468\) 10.4616 14.3992i 0.483589 0.665603i
\(469\) 0.0835921 0.257270i 0.00385993 0.0118796i
\(470\) 0 0
\(471\) −6.09017 + 4.42477i −0.280620 + 0.203883i
\(472\) 6.70820i 0.308770i
\(473\) −32.9565 + 13.2361i −1.51534 + 0.608595i
\(474\) 2.96556 0.136213
\(475\) 0 0
\(476\) 4.06231 + 12.5025i 0.186195 + 0.573051i
\(477\) −14.6089 4.74671i −0.668894 0.217337i
\(478\) −9.20029 + 12.6631i −0.420812 + 0.579198i
\(479\) −20.7533 15.0781i −0.948242 0.688938i 0.00214844 0.999998i \(-0.499316\pi\)
−0.950390 + 0.311060i \(0.899316\pi\)
\(480\) 0 0
\(481\) 20.3541 + 62.6435i 0.928067 + 2.85630i
\(482\) 10.5801 + 14.5623i 0.481912 + 0.663295i
\(483\) 2.12461i 0.0966732i
\(484\) −4.78115 9.90659i −0.217325 0.450300i
\(485\) 0 0
\(486\) −7.80902 + 5.67358i −0.354224 + 0.257359i
\(487\) 8.28199 2.69098i 0.375293 0.121940i −0.115296 0.993331i \(-0.536782\pi\)
0.490589 + 0.871391i \(0.336782\pi\)
\(488\) −8.28199 2.69098i −0.374908 0.121815i
\(489\) −3.76393 2.73466i −0.170211 0.123665i
\(490\) 0 0
\(491\) −8.52786 + 26.2461i −0.384857 + 1.18447i 0.551727 + 0.834025i \(0.313969\pi\)
−0.936584 + 0.350443i \(0.886031\pi\)
\(492\) −1.34708 + 0.437694i −0.0607312 + 0.0197328i
\(493\) −1.35960 1.87132i −0.0612331 0.0842801i
\(494\) 36.5066 1.64251
\(495\) 0 0
\(496\) −3.00000 −0.134704
\(497\) 23.4989 + 32.3435i 1.05407 + 1.45080i
\(498\) −1.36733 + 0.444272i −0.0612714 + 0.0199083i
\(499\) −7.46149 + 22.9641i −0.334022 + 1.02801i 0.633179 + 0.774005i \(0.281750\pi\)
−0.967202 + 0.254010i \(0.918250\pi\)
\(500\) 0 0
\(501\) 1.83688 + 1.33457i 0.0820658 + 0.0596243i
\(502\) −13.7966 4.48278i −0.615771 0.200076i
\(503\) −8.52675 + 2.77051i −0.380189 + 0.123531i −0.492876 0.870100i \(-0.664054\pi\)
0.112687 + 0.993631i \(0.464054\pi\)
\(504\) −6.92705 + 5.03280i −0.308555 + 0.224179i
\(505\) 0 0
\(506\) −5.20820 3.26944i −0.231533 0.145344i
\(507\) 9.88854i 0.439166i
\(508\) 1.26133 + 1.73607i 0.0559623 + 0.0770256i
\(509\) 0.0623059 + 0.191758i 0.00276166 + 0.00849952i 0.952428 0.304764i \(-0.0985776\pi\)
−0.949666 + 0.313264i \(0.898578\pi\)
\(510\) 0 0
\(511\) −28.0623 20.3885i −1.24140 0.901932i
\(512\) 0.587785 0.809017i 0.0259767 0.0357538i
\(513\) −12.4495 4.04508i −0.549658 0.178595i
\(514\) −9.80902 30.1891i −0.432657 1.33158i
\(515\) 0 0
\(516\) 4.09017 0.180060
\(517\) −3.13068 3.74671i −0.137687 0.164780i
\(518\) 31.6869i 1.39224i
\(519\) −2.64590 + 1.92236i −0.116142 + 0.0843821i
\(520\) 0 0
\(521\) −5.46149 + 16.8087i −0.239272 + 0.736405i 0.757254 + 0.653121i \(0.226541\pi\)
−0.996526 + 0.0832835i \(0.973459\pi\)
\(522\) 0.885544 1.21885i 0.0387592 0.0533475i
\(523\) 2.02063 2.78115i 0.0883558 0.121611i −0.762551 0.646928i \(-0.776053\pi\)
0.850907 + 0.525317i \(0.176053\pi\)
\(524\) 6.35410 19.5559i 0.277580 0.854304i
\(525\) 0 0
\(526\) −8.92705 + 6.48588i −0.389238 + 0.282798i
\(527\) 13.1459i 0.572644i
\(528\) 0.0857567 + 1.26393i 0.00373208 + 0.0550056i
\(529\) 19.5623 0.850535
\(530\) 0 0
\(531\) 5.91641 + 18.2088i 0.256750 + 0.790196i
\(532\) −16.7027 5.42705i −0.724156 0.235293i
\(533\) −13.5923 + 18.7082i −0.588748 + 0.810342i
\(534\) 3.45492 + 2.51014i 0.149509 + 0.108624i
\(535\) 0 0
\(536\) −0.0278640 0.0857567i −0.00120354 0.00370413i
\(537\) −2.39163 3.29180i −0.103206 0.142051i
\(538\) 18.0902i 0.779923i
\(539\) 1.61803 6.43288i 0.0696937 0.277084i
\(540\) 0 0
\(541\) 3.11803 2.26538i 0.134055 0.0973965i −0.518737 0.854934i \(-0.673598\pi\)
0.652792 + 0.757537i \(0.273598\pi\)
\(542\) −15.4742 + 5.02786i −0.664673 + 0.215965i
\(543\) −4.35926 1.41641i −0.187074 0.0607839i
\(544\) 3.54508 + 2.57565i 0.151994 + 0.110430i
\(545\) 0 0
\(546\) 2.20820 6.79615i 0.0945024 0.290848i
\(547\) 2.02063 0.656541i 0.0863957 0.0280717i −0.265500 0.964111i \(-0.585537\pi\)
0.351896 + 0.936039i \(0.385537\pi\)
\(548\) −1.86936 2.57295i −0.0798550 0.109911i
\(549\) 24.8541 1.06075
\(550\) 0 0
\(551\) 3.09017 0.131646
\(552\) 0.416272 + 0.572949i 0.0177177 + 0.0243863i
\(553\) −22.1518 + 7.19756i −0.941991 + 0.306071i
\(554\) −1.94427 + 5.98385i −0.0826042 + 0.254230i
\(555\) 0 0
\(556\) 6.54508 + 4.75528i 0.277573 + 0.201669i
\(557\) −0.898056 0.291796i −0.0380519 0.0123638i 0.289929 0.957048i \(-0.406368\pi\)
−0.327981 + 0.944684i \(0.606368\pi\)
\(558\) 8.14324 2.64590i 0.344731 0.112010i
\(559\) 54.0238 39.2506i 2.28496 1.66012i
\(560\) 0 0
\(561\) −5.53851 + 0.375783i −0.233836 + 0.0158656i
\(562\) 18.1803i 0.766891i
\(563\) −21.0418 28.9615i −0.886804 1.22058i −0.974489 0.224433i \(-0.927947\pi\)
0.0876852 0.996148i \(-0.472053\pi\)
\(564\) 0.173762 + 0.534785i 0.00731670 + 0.0225185i
\(565\) 0 0
\(566\) 14.8541 + 10.7921i 0.624364 + 0.453627i
\(567\) 13.5923 18.7082i 0.570823 0.785671i
\(568\) 12.6740 + 4.11803i 0.531789 + 0.172789i
\(569\) 12.8262 + 39.4751i 0.537704 + 1.65488i 0.737733 + 0.675092i \(0.235896\pi\)
−0.200029 + 0.979790i \(0.564104\pi\)
\(570\) 0 0
\(571\) 18.7082 0.782914 0.391457 0.920196i \(-0.371971\pi\)
0.391457 + 0.920196i \(0.371971\pi\)
\(572\) 13.2618 + 15.8713i 0.554503 + 0.663613i
\(573\) 9.18034i 0.383514i
\(574\) 9.00000 6.53888i 0.375653 0.272928i
\(575\) 0 0
\(576\) −0.881966 + 2.71441i −0.0367486 + 0.113101i
\(577\) −16.8743 + 23.2254i −0.702485 + 0.966887i 0.297442 + 0.954740i \(0.403867\pi\)
−0.999926 + 0.0121471i \(0.996133\pi\)
\(578\) −1.29408 + 1.78115i −0.0538268 + 0.0740862i
\(579\) 0.218847 0.673542i 0.00909497 0.0279914i
\(580\) 0 0
\(581\) 9.13525 6.63715i 0.378994 0.275355i
\(582\) 0.360680i 0.0149507i
\(583\) 9.49032 15.1180i 0.393049 0.626125i
\(584\) −11.5623 −0.478452
\(585\) 0 0
\(586\) −5.89919 18.1558i −0.243693 0.750010i
\(587\) 21.0620 + 6.84346i 0.869322 + 0.282460i 0.709517 0.704689i \(-0.248913\pi\)
0.159805 + 0.987149i \(0.448913\pi\)
\(588\) −0.449028 + 0.618034i −0.0185176 + 0.0254873i
\(589\) 14.2082 + 10.3229i 0.585439 + 0.425346i
\(590\) 0 0
\(591\) −0.562306 1.73060i −0.0231302 0.0711874i
\(592\) −6.20837 8.54508i −0.255162 0.351201i
\(593\) 38.3951i 1.57670i −0.615228 0.788349i \(-0.710936\pi\)
0.615228 0.788349i \(-0.289064\pi\)
\(594\) −2.76393 6.88191i −0.113406 0.282368i
\(595\) 0 0
\(596\) 17.1353 12.4495i 0.701887 0.509951i
\(597\) 1.43284 0.465558i 0.0586423 0.0190540i
\(598\) 10.9964 + 3.57295i 0.449676 + 0.146109i
\(599\) 7.23607 + 5.25731i 0.295658 + 0.214808i 0.725718 0.687992i \(-0.241508\pi\)
−0.430060 + 0.902800i \(0.641508\pi\)
\(600\) 0 0
\(601\) −6.02786 + 18.5519i −0.245882 + 0.756746i 0.749608 + 0.661881i \(0.230242\pi\)
−0.995490 + 0.0948646i \(0.969758\pi\)
\(602\) −30.5523 + 9.92705i −1.24522 + 0.404596i
\(603\) 0.151269 + 0.208204i 0.00616015 + 0.00847872i
\(604\) −20.0902 −0.817457
\(605\) 0 0
\(606\) 5.03444 0.204510
\(607\) −11.7759 16.2082i −0.477971 0.657871i 0.500142 0.865943i \(-0.333281\pi\)
−0.978113 + 0.208072i \(0.933281\pi\)
\(608\) −5.56758 + 1.80902i −0.225795 + 0.0733653i
\(609\) 0.186918 0.575274i 0.00757429 0.0233113i
\(610\) 0 0
\(611\) 7.42705 + 5.39607i 0.300466 + 0.218302i
\(612\) −11.8945 3.86475i −0.480805 0.156223i
\(613\) 19.6947 6.39919i 0.795460 0.258461i 0.117033 0.993128i \(-0.462662\pi\)
0.678428 + 0.734667i \(0.262662\pi\)
\(614\) −7.73607 + 5.62058i −0.312202 + 0.226828i
\(615\) 0 0
\(616\) −3.70820 9.23305i −0.149408 0.372010i
\(617\) 48.6312i 1.95782i −0.204297 0.978909i \(-0.565491\pi\)
0.204297 0.978909i \(-0.434509\pi\)
\(618\) 0.159002 + 0.218847i 0.00639599 + 0.00880332i
\(619\) −9.83688 30.2748i −0.395378 1.21685i −0.928667 0.370914i \(-0.879044\pi\)
0.533289 0.845933i \(-0.320956\pi\)
\(620\) 0 0
\(621\) −3.35410 2.43690i −0.134595 0.0977893i
\(622\) 1.48584 2.04508i 0.0595768 0.0820004i
\(623\) −31.8994 10.3647i −1.27802 0.415255i
\(624\) −0.736068 2.26538i −0.0294663 0.0906880i
\(625\) 0 0
\(626\) −19.9443 −0.797133
\(627\) 3.94298 6.28115i 0.157468 0.250845i
\(628\) 19.7082i 0.786443i
\(629\) 37.4443 27.2049i 1.49300 1.08473i
\(630\) 0 0
\(631\) −6.12868 + 18.8621i −0.243979 + 0.750889i 0.751824 + 0.659364i \(0.229174\pi\)
−0.995803 + 0.0915256i \(0.970826\pi\)
\(632\) −4.56352 + 6.28115i −0.181527 + 0.249851i
\(633\) 6.12261 8.42705i 0.243352 0.334945i
\(634\) −9.80902 + 30.1891i −0.389566 + 1.19896i
\(635\) 0 0
\(636\) −1.66312 + 1.20833i −0.0659470 + 0.0479133i
\(637\) 12.4721i 0.494164i
\(638\) 1.12257 + 1.34346i 0.0444430 + 0.0531880i
\(639\) −38.0344 −1.50462
\(640\) 0 0
\(641\) −8.52786 26.2461i −0.336830 1.03666i −0.965813 0.259238i \(-0.916529\pi\)
0.628983 0.777419i \(-0.283471\pi\)
\(642\) 0.277515 + 0.0901699i 0.0109526 + 0.00355872i
\(643\) −8.53926 + 11.7533i −0.336756 + 0.463504i −0.943490 0.331400i \(-0.892479\pi\)
0.606735 + 0.794904i \(0.292479\pi\)
\(644\) −4.50000 3.26944i −0.177325 0.128834i
\(645\) 0 0
\(646\) −7.92705 24.3970i −0.311886 0.959885i
\(647\) 25.4540 + 35.0344i 1.00070 + 1.37735i 0.924895 + 0.380223i \(0.124153\pi\)
0.0758058 + 0.997123i \(0.475847\pi\)
\(648\) 7.70820i 0.302807i
\(649\) −22.1976 + 1.50609i −0.871330 + 0.0591190i
\(650\) 0 0
\(651\) 2.78115 2.02063i 0.109002 0.0791946i
\(652\) 11.5842 3.76393i 0.453672 0.147407i
\(653\) −17.5680 5.70820i −0.687491 0.223379i −0.0556188 0.998452i \(-0.517713\pi\)
−0.631872 + 0.775073i \(0.717713\pi\)
\(654\) −2.82624 2.05338i −0.110515 0.0802936i
\(655\) 0 0
\(656\) 1.14590 3.52671i 0.0447398 0.137695i
\(657\) 31.3849 10.1976i 1.22444 0.397845i
\(658\) −2.59590 3.57295i −0.101199 0.139288i
\(659\) −45.4508 −1.77051 −0.885257 0.465102i \(-0.846017\pi\)
−0.885257 + 0.465102i \(0.846017\pi\)
\(660\) 0 0
\(661\) 30.2918 1.17821 0.589107 0.808055i \(-0.299480\pi\)
0.589107 + 0.808055i \(0.299480\pi\)
\(662\) −7.05342 9.70820i −0.274139 0.377320i
\(663\) 9.92684 3.22542i 0.385526 0.125265i
\(664\) 1.16312 3.57971i 0.0451378 0.138920i
\(665\) 0 0
\(666\) 24.3885 + 17.7193i 0.945037 + 0.686609i
\(667\) 0.930812 + 0.302439i 0.0360412 + 0.0117105i
\(668\) −5.65334 + 1.83688i −0.218734 + 0.0710711i
\(669\) 6.39919 4.64928i 0.247407 0.179752i
\(670\) 0 0
\(671\) −7.04508 + 28.0094i −0.271972 + 1.08129i
\(672\) 1.14590i 0.0442040i
\(673\) −14.3516 19.7533i −0.553214 0.761433i 0.437230 0.899350i \(-0.355960\pi\)
−0.990444 + 0.137916i \(0.955960\pi\)
\(674\) −0.399187 1.22857i −0.0153761 0.0473228i
\(675\) 0 0
\(676\) −20.9443 15.2169i −0.805549 0.585266i
\(677\) −7.05342 + 9.70820i −0.271085 + 0.373117i −0.922756 0.385386i \(-0.874068\pi\)
0.651671 + 0.758502i \(0.274068\pi\)
\(678\) 1.36733 + 0.444272i 0.0525119 + 0.0170622i
\(679\) 0.875388 + 2.69417i 0.0335943 + 0.103393i
\(680\) 0 0
\(681\) 7.00000 0.268241
\(682\) 0.673542 + 9.92705i 0.0257913 + 0.380126i
\(683\) 33.8885i 1.29671i 0.761339 + 0.648355i \(0.224543\pi\)
−0.761339 + 0.648355i \(0.775457\pi\)
\(684\) 13.5172 9.82084i 0.516844 0.375509i
\(685\) 0 0
\(686\) −4.63525 + 14.2658i −0.176975 + 0.544673i
\(687\) 0.118513 0.163119i 0.00452155 0.00622338i
\(688\) −6.29412 + 8.66312i −0.239961 + 0.330278i
\(689\) −10.3713 + 31.9196i −0.395116 + 1.21604i
\(690\) 0 0
\(691\) 0.0278640 0.0202444i 0.00106000 0.000770134i −0.587255 0.809402i \(-0.699791\pi\)
0.588315 + 0.808632i \(0.299791\pi\)
\(692\) 8.56231i 0.325490i
\(693\) 18.2088 + 21.7918i 0.691696 + 0.827802i
\(694\) 14.5623 0.552778
\(695\) 0 0
\(696\) −0.0623059 0.191758i −0.00236170 0.00726856i
\(697\) 15.4539 + 5.02129i 0.585359 + 0.190195i
\(698\) 4.25325 5.85410i 0.160988 0.221581i
\(699\) 4.75329 + 3.45347i 0.179786 + 0.130622i
\(700\) 0 0
\(701\) −4.07953 12.5555i −0.154082 0.474214i 0.843985 0.536367i \(-0.180204\pi\)
−0.998067 + 0.0621522i \(0.980204\pi\)
\(702\) 8.19624 + 11.2812i 0.309347 + 0.425780i
\(703\) 61.8328i 2.33207i
\(704\) −2.80902 1.76336i −0.105869 0.0664590i
\(705\) 0 0
\(706\) 19.0623 13.8496i 0.717419 0.521236i
\(707\) −37.6057 + 12.2188i −1.41431 + 0.459537i
\(708\) 2.43690 + 0.791796i 0.0915842 + 0.0297575i
\(709\) −5.42705 3.94298i −0.203817 0.148082i 0.481195 0.876614i \(-0.340203\pi\)
−0.685012 + 0.728532i \(0.740203\pi\)
\(710\) 0 0
\(711\) 6.84752 21.0745i 0.256802 0.790356i
\(712\) −10.6331 + 3.45492i −0.398494 + 0.129478i
\(713\) 3.26944 + 4.50000i 0.122442 + 0.168526i
\(714\) −5.02129 −0.187917
\(715\) 0 0
\(716\) 10.6525 0.398102
\(717\) −3.51420 4.83688i −0.131240 0.180637i
\(718\) 8.50651 2.76393i 0.317460 0.103149i
\(719\) −14.1074 + 43.4181i −0.526117 + 1.61922i 0.235980 + 0.971758i \(0.424170\pi\)
−0.762097 + 0.647463i \(0.775830\pi\)
\(720\) 0 0
\(721\) −1.71885 1.24882i −0.0640132 0.0465083i
\(722\) 14.5231 + 4.71885i 0.540494 + 0.175617i
\(723\) −6.53888 + 2.12461i −0.243184 + 0.0790152i
\(724\) 9.70820 7.05342i 0.360803 0.262138i
\(725\) 0 0
\(726\) 4.16312 0.567541i 0.154508 0.0210634i
\(727\) 14.7639i 0.547564i −0.961792 0.273782i \(-0.911725\pi\)
0.961792 0.273782i \(-0.0882747\pi\)
\(728\) 10.9964 + 15.1353i 0.407554 + 0.560950i
\(729\) 6.00658 + 18.4863i 0.222466 + 0.684679i
\(730\) 0 0
\(731\) −37.9615 27.5806i −1.40406 1.02011i
\(732\) 1.95511 2.69098i 0.0722631 0.0994616i
\(733\) 34.9771 + 11.3647i 1.29191 + 0.419766i 0.872759 0.488151i \(-0.162328\pi\)
0.419149 + 0.907917i \(0.362328\pi\)
\(734\) −3.00000 9.23305i −0.110732 0.340798i
\(735\) 0 0
\(736\) −1.85410 −0.0683431
\(737\) −0.277515 + 0.111456i −0.0102224 + 0.00410554i
\(738\) 10.5836i 0.389587i
\(739\) 17.5623 12.7598i 0.646040 0.469375i −0.215880 0.976420i \(-0.569262\pi\)
0.861920 + 0.507044i \(0.169262\pi\)
\(740\) 0 0
\(741\) −4.30902 + 13.2618i −0.158296 + 0.487184i
\(742\) 9.49032 13.0623i 0.348401 0.479532i
\(743\) 19.8459 27.3156i 0.728077 1.00211i −0.271140 0.962540i \(-0.587401\pi\)
0.999217 0.0395720i \(-0.0125994\pi\)
\(744\) 0.354102 1.08981i 0.0129820 0.0399545i
\(745\) 0 0
\(746\) −24.2533 + 17.6210i −0.887976 + 0.645152i
\(747\) 10.7426i 0.393053i
\(748\) 7.72696 12.3090i 0.282526 0.450062i
\(749\) −2.29180 −0.0837404
\(750\) 0 0
\(751\) 3.15654 + 9.71483i 0.115184 + 0.354499i 0.991985 0.126353i \(-0.0403272\pi\)
−0.876802 + 0.480853i \(0.840327\pi\)
\(752\) −1.40008 0.454915i −0.0510558 0.0165890i
\(753\) 3.25693 4.48278i 0.118689 0.163362i
\(754\) −2.66312 1.93487i −0.0969851 0.0704638i
\(755\) 0 0
\(756\) −2.07295 6.37988i −0.0753924 0.232034i
\(757\) −9.07405 12.4894i −0.329802 0.453933i 0.611626 0.791147i \(-0.290516\pi\)
−0.941428 + 0.337213i \(0.890516\pi\)
\(758\) 8.09017i 0.293848i
\(759\) 1.80244 1.50609i 0.0654244 0.0546674i
\(760\) 0 0
\(761\) 19.9894 14.5231i 0.724614 0.526463i −0.163241 0.986586i \(-0.552195\pi\)
0.887855 + 0.460124i \(0.152195\pi\)
\(762\) −0.779543 + 0.253289i −0.0282399 + 0.00917569i
\(763\) 26.0948 + 8.47871i 0.944695 + 0.306950i
\(764\) 19.4443 + 14.1271i 0.703469 + 0.511100i
\(765\) 0 0
\(766\) 1.96556 6.04937i 0.0710185 0.218572i
\(767\) 39.7854 12.9271i 1.43657 0.466769i
\(768\) 0.224514 + 0.309017i 0.00810145 + 0.0111507i
\(769\) −12.2361 −0.441244 −0.220622 0.975359i \(-0.570809\pi\)
−0.220622 + 0.975359i \(0.570809\pi\)
\(770\) 0 0
\(771\) 12.1246 0.436657
\(772\) 1.08981 + 1.50000i 0.0392233 + 0.0539862i
\(773\) 27.0786 8.79837i 0.973950 0.316456i 0.221540 0.975151i \(-0.428892\pi\)
0.752409 + 0.658696i \(0.228892\pi\)
\(774\) 9.44427 29.0665i 0.339467 1.04477i
\(775\) 0 0
\(776\) 0.763932 + 0.555029i 0.0274236 + 0.0199244i
\(777\) 11.5109 + 3.74013i 0.412953 + 0.134177i
\(778\) −24.3970 + 7.92705i −0.874673 + 0.284199i
\(779\) −17.5623 + 12.7598i −0.629235 + 0.457166i
\(780\) 0 0
\(781\) 10.7812 42.8631i 0.385780 1.53376i
\(782\) 8.12461i 0.290536i
\(783\) 0.693786 + 0.954915i 0.0247939 + 0.0341259i
\(784\) −0.618034 1.90211i −0.0220726 0.0679326i
\(785\) 0 0
\(786\) 6.35410 + 4.61653i 0.226643 + 0.164666i
\(787\) −14.9394 + 20.5623i −0.532532 + 0.732967i −0.987514 0.157534i \(-0.949646\pi\)
0.454982 + 0.890501i \(0.349646\pi\)
\(788\) 4.53077 + 1.47214i 0.161402 + 0.0524427i
\(789\) −1.30244 4.00850i −0.0463681 0.142706i
\(790\) 0 0
\(791\) −11.2918 −0.401490
\(792\) 9.18005 + 2.30902i 0.326199 + 0.0820473i
\(793\) 54.3050i 1.92843i
\(794\) 5.19098 3.77147i 0.184221 0.133844i
\(795\) 0 0
\(796\) −1.21885 + 3.75123i −0.0432009 + 0.132959i
\(797\) −11.6169 + 15.9894i −0.411493 + 0.566372i −0.963582 0.267413i \(-0.913831\pi\)
0.552088 + 0.833786i \(0.313831\pi\)
\(798\) 3.94298 5.42705i 0.139580 0.192116i
\(799\) 1.99342 6.13512i 0.0705222 0.217045i
\(800\) 0 0
\(801\) 25.8156 18.7561i 0.912149 0.662715i
\(802\) 15.4377i 0.545124i
\(803\) 2.59590 + 38.2599i 0.0916073 + 1.35016i
\(804\) 0.0344419 0.00121467
\(805\) 0 0
\(806\) −5.78115 17.7926i −0.203632 0.626716i
\(807\) −6.57164 2.13525i −0.231333 0.0751645i
\(808\) −7.74721 + 10.6631i −0.272546 + 0.375127i
\(809\) 15.2254 + 11.0619i 0.535297 + 0.388916i 0.822336 0.569003i \(-0.192671\pi\)
−0.287038 + 0.957919i \(0.592671\pi\)
\(810\) 0 0
\(811\) −13.3647 41.1325i −0.469300 1.44436i −0.853494 0.521103i \(-0.825521\pi\)
0.384194 0.923252i \(-0.374479\pi\)
\(812\) 0.930812 + 1.28115i 0.0326651 + 0.0449597i
\(813\) 6.21478i 0.217962i
\(814\) −26.8820 + 22.4621i −0.942212 + 0.787296i
\(815\) 0 0
\(816\) −1.35410 + 0.983813i −0.0474031 + 0.0344403i
\(817\) 59.6188 19.3713i 2.08580 0.677717i
\(818\) 19.3314 + 6.28115i 0.675907 + 0.219615i
\(819\) −43.1976 31.3849i −1.50944 1.09668i
\(820\) 0 0
\(821\) 9.07295 27.9237i 0.316648 0.974543i −0.658423 0.752648i \(-0.728776\pi\)
0.975071 0.221894i \(-0.0712240\pi\)
\(822\) 1.15533 0.375388i 0.0402966 0.0130932i
\(823\) 23.8092 + 32.7705i 0.829935 + 1.14231i 0.987935 + 0.154869i \(0.0494955\pi\)
−0.158000 + 0.987439i \(0.550504\pi\)
\(824\) −0.708204 −0.0246715
\(825\) 0 0
\(826\) −20.1246 −0.700225
\(827\) 8.75127 + 12.0451i 0.304311 + 0.418849i 0.933597 0.358326i \(-0.116652\pi\)
−0.629285 + 0.777174i \(0.716652\pi\)
\(828\) 5.03280 1.63525i 0.174902 0.0568290i
\(829\) −1.50658 + 4.63677i −0.0523256 + 0.161042i −0.973805 0.227387i \(-0.926982\pi\)
0.921479 + 0.388428i \(0.126982\pi\)
\(830\) 0 0
\(831\) −1.94427 1.41260i −0.0674460 0.0490024i
\(832\) 5.93085 + 1.92705i 0.205615 + 0.0668085i
\(833\) 8.33499 2.70820i 0.288790 0.0938337i
\(834\) −2.50000 + 1.81636i −0.0865679 + 0.0628953i
\(835\) 0 0
\(836\) 7.23607 + 18.0171i 0.250265 + 0.623134i
\(837\) 6.70820i 0.231869i
\(838\) −14.0741 19.3713i −0.486181 0.669171i
\(839\) 15.1631 + 46.6673i 0.523489 + 1.61113i 0.767285 + 0.641307i \(0.221607\pi\)
−0.243796 + 0.969827i \(0.578393\pi\)
\(840\) 0 0
\(841\) 23.2361 + 16.8820i 0.801244 + 0.582138i
\(842\) −2.64890 + 3.64590i −0.0912871 + 0.125646i
\(843\) −6.60440 2.14590i −0.227467 0.0739087i
\(844\) 8.42705 + 25.9358i 0.290071 + 0.892747i
\(845\) 0 0
\(846\) 4.20163 0.144455
\(847\) −29.7198 + 14.3435i −1.02118 + 0.492847i
\(848\) 5.38197i 0.184817i
\(849\) −5.67376 + 4.12223i −0.194723 + 0.141475i
\(850\) 0 0
\(851\) −6.05166 + 18.6251i −0.207448 + 0.638460i
\(852\) −2.99193 + 4.11803i −0.102502 + 0.141082i
\(853\) −9.23305 + 12.7082i −0.316134 + 0.435121i −0.937282 0.348573i \(-0.886667\pi\)
0.621148 + 0.783693i \(0.286667\pi\)
\(854\) −8.07295 + 24.8460i −0.276251 + 0.850212i
\(855\) 0 0
\(856\) −0.618034 + 0.449028i −0.0211240 + 0.0153475i
\(857\) 41.3394i 1.41213i 0.708149 + 0.706063i \(0.249531\pi\)
−0.708149 + 0.706063i \(0.750469\pi\)
\(858\) −7.33094 + 2.94427i −0.250274 + 0.100516i
\(859\) 6.30495 0.215122 0.107561 0.994198i \(-0.465696\pi\)
0.107561 + 0.994198i \(0.465696\pi\)
\(860\) 0 0
\(861\) 1.31308 + 4.04125i 0.0447497 + 0.137725i
\(862\) 23.0499 + 7.48936i 0.785082 + 0.255089i
\(863\) −8.30224 + 11.4271i −0.282611 + 0.388981i −0.926597 0.376057i \(-0.877280\pi\)
0.643985 + 0.765038i \(0.277280\pi\)
\(864\) −1.80902 1.31433i −0.0615440 0.0447143i
\(865\) 0 0
\(866\) −3.56231 10.9637i −0.121052 0.372560i
\(867\) −0.494296 0.680340i −0.0167872 0.0231056i
\(868\) 9.00000i 0.305480i
\(869\) 21.8090 + 13.6906i 0.739820 + 0.464421i
\(870\) 0 0
\(871\) 0.454915 0.330515i 0.0154142 0.0111991i
\(872\) 8.69827 2.82624i 0.294560 0.0957085i
\(873\) −2.56314 0.832816i −0.0867493 0.0281865i
\(874\) 8.78115 + 6.37988i 0.297027 + 0.215803i
\(875\) 0 0
\(876\) 1.36475 4.20025i 0.0461105 0.141913i
\(877\) 20.9232 6.79837i 0.706528 0.229565i 0.0663553 0.997796i \(-0.478863\pi\)
0.640172 + 0.768231i \(0.278863\pi\)
\(878\) −2.31838 3.19098i −0.0782417 0.107690i
\(879\) 7.29180 0.245946
\(880\) 0 0
\(881\) −42.7984 −1.44191 −0.720957 0.692980i \(-0.756297\pi\)
−0.720957 + 0.692980i \(0.756297\pi\)
\(882\) 3.35520 + 4.61803i 0.112975 + 0.155497i
\(883\) 46.0997 14.9787i 1.55138 0.504074i 0.596891 0.802322i \(-0.296402\pi\)
0.954488 + 0.298248i \(0.0964023\pi\)
\(884\) −8.44427 + 25.9888i −0.284012 + 0.874098i
\(885\) 0 0
\(886\) 14.0623 + 10.2169i 0.472432 + 0.343242i
\(887\) −35.4994 11.5344i −1.19195 0.387289i −0.355158 0.934806i \(-0.615573\pi\)
−0.836794 + 0.547518i \(0.815573\pi\)
\(888\) 3.83698 1.24671i 0.128761 0.0418369i
\(889\) 5.20820 3.78398i 0.174678 0.126911i
\(890\) 0 0
\(891\) −25.5066 + 1.73060i −0.854503 + 0.0579773i
\(892\) 20.7082i 0.693362i
\(893\) 5.06555 + 6.97214i 0.169512 + 0.233314i
\(894\) 2.50000 + 7.69421i 0.0836125 + 0.257333i
\(895\) 0 0
\(896\) −2.42705 1.76336i −0.0810821 0.0589096i
\(897\) −2.59590 + 3.57295i −0.0866746 + 0.119297i
\(898\) 24.8990 + 8.09017i 0.830890 + 0.269972i
\(899\) −0.489357 1.50609i −0.0163210 0.0502308i
\(900\) 0 0
\(901\) 23.5836 0.785683
\(902\) −11.9272 3.00000i −0.397133 0.0998891i
\(903\) 12.2705i 0.408337i
\(904\) −3.04508 + 2.21238i −0.101278 + 0.0735828i
\(905\) 0 0
\(906\) 2.37132 7.29818i 0.0787819 0.242466i
\(907\) 24.7275 34.0344i 0.821062 1.13010i −0.168459 0.985709i \(-0.553879\pi\)
0.989521 0.144386i \(-0.0461208\pi\)
\(908\) −10.7719 + 14.8262i −0.357478 + 0.492026i
\(909\) 11.6246 35.7769i 0.385564 1.18664i
\(910\) 0 0
\(911\) 43.8328 31.8464i 1.45225 1.05512i 0.466946 0.884286i \(-0.345354\pi\)
0.985300 0.170833i \(-0.0546457\pi\)
\(912\) 2.23607i 0.0740436i
\(913\) −12.1065 3.04508i −0.400665 0.100778i
\(914\) 6.34752 0.209957
\(915\) 0 0
\(916\) 0.163119 + 0.502029i 0.00538960 + 0.0165875i
\(917\) −58.6677 19.0623i −1.93738 0.629493i
\(918\) 5.75934 7.92705i 0.190087 0.261632i
\(919\) −29.0066 21.0745i −0.956839 0.695184i −0.00442432 0.999990i \(-0.501408\pi\)
−0.952414 + 0.304806i \(0.901408\pi\)
\(920\) 0 0
\(921\) −1.12868 3.47371i −0.0371912 0.114463i
\(922\) 4.39201 + 6.04508i 0.144643 + 0.199084i
\(923\) 83.1033i 2.73538i
\(924\) 3.79180 0.257270i 0.124741 0.00846357i
\(925\) 0 0
\(926\) 3.57295 2.59590i 0.117414 0.0853065i
\(927\) 1.92236 0.624612i 0.0631385 0.0205149i
\(928\) 0.502029 + 0.163119i 0.0164799 + 0.00535464i
\(929\) −4.47214 3.24920i −0.146726 0.106603i 0.512001 0.858985i \(-0.328905\pi\)
−0.658727 + 0.752382i \(0.728905\pi\)
\(930\) 0 0
\(931\) −3.61803 + 11.1352i −0.118576 + 0.364940i
\(932\) −14.6291 + 4.75329i −0.479193 + 0.155699i
\(933\) 0.567541 + 0.781153i 0.0185805 + 0.0255738i
\(934\) −15.2361 −0.498539
\(935\) 0 0
\(936\) −17.7984 −0.581758
\(937\) 24.7602 + 34.0795i 0.808881 + 1.11333i 0.991495 + 0.130145i \(0.0415442\pi\)
−0.182614 + 0.983185i \(0.558456\pi\)
\(938\) −0.257270 + 0.0835921i −0.00840017 + 0.00272938i
\(939\) 2.35410 7.24518i 0.0768232 0.236438i
\(940\) 0 0
\(941\) 8.60739 + 6.25364i 0.280593 + 0.203863i 0.719176 0.694828i \(-0.244519\pi\)
−0.438583 + 0.898691i \(0.644519\pi\)
\(942\) 7.15942 + 2.32624i 0.233267 + 0.0757929i
\(943\) −6.53888 + 2.12461i −0.212935 + 0.0691869i
\(944\) −5.42705 + 3.94298i −0.176635 + 0.128333i
\(945\) 0 0
\(946\) 30.0795 + 18.8824i 0.977970 + 0.613919i
\(947\) 43.3050i 1.40722i −0.710585 0.703611i \(-0.751570\pi\)
0.710585 0.703611i \(-0.248430\pi\)
\(948\) −1.74311 2.39919i −0.0566136 0.0779220i
\(949\) −22.2812 68.5743i −0.723277 2.22602i
\(950\) 0 0
\(951\) −9.80902 7.12667i −0.318079 0.231098i
\(952\) 7.72696 10.6353i 0.250432 0.344691i
\(953\) −15.9434 5.18034i −0.516459 0.167808i 0.0391788 0.999232i \(-0.487526\pi\)
−0.555638 + 0.831425i \(0.687526\pi\)
\(954\) 4.74671 + 14.6089i 0.153680 + 0.472980i
\(955\) 0 0
\(956\) 15.6525 0.506237
\(957\) −0.620541 + 0.249224i −0.0200593 + 0.00805625i
\(958\) 25.6525i 0.828794i
\(959\) −7.71885 + 5.60807i −0.249255 + 0.181094i
\(960\) 0 0
\(961\) −6.79837 + 20.9232i −0.219302 + 0.674943i
\(962\) 38.7158 53.2877i 1.24825 1.71807i
\(963\) 1.28157 1.76393i 0.0412981 0.0568419i
\(964\) 5.56231 17.1190i 0.179150 0.551366i
\(965\) 0 0
\(966\) 1.71885 1.24882i 0.0553030 0.0401800i
\(967\) 13.1803i 0.423851i −0.977286 0.211926i \(-0.932027\pi\)
0.977286 0.211926i \(-0.0679734\pi\)
\(968\) −5.20431 + 9.69098i −0.167273 + 0.311480i
\(969\) 9.79837 0.314769
\(970\) 0 0
\(971\) −12.7599 39.2708i −0.409484 1.26026i −0.917093 0.398674i \(-0.869471\pi\)
0.507609 0.861587i \(-0.330529\pi\)
\(972\) 9.18005 + 2.98278i 0.294450 + 0.0956727i
\(973\) 14.2658 19.6353i 0.457342 0.629477i
\(974\) −7.04508 5.11855i −0.225739 0.164009i
\(975\) 0 0
\(976\) 2.69098 + 8.28199i 0.0861363 + 0.265100i
\(977\) 5.31031 + 7.30902i 0.169892 + 0.233836i 0.885470 0.464697i \(-0.153837\pi\)
−0.715578 + 0.698533i \(0.753837\pi\)
\(978\) 4.65248i 0.148770i
\(979\) 13.8197 + 34.4095i 0.441678 + 1.09973i
\(980\) 0 0
\(981\) −21.1180 + 15.3431i −0.674247 + 0.489869i
\(982\) 26.2461 8.52786i 0.837546 0.272135i
\(983\) −19.1926 6.23607i −0.612150 0.198900i −0.0134983 0.999909i \(-0.504297\pi\)
−0.598652 + 0.801009i \(0.704297\pi\)
\(984\) 1.14590 + 0.832544i 0.0365299 + 0.0265405i
\(985\) 0 0
\(986\) −0.714782 + 2.19987i −0.0227633 + 0.0700582i
\(987\) 1.60435 0.521286i 0.0510672 0.0165927i
\(988\) −21.4580 29.5344i −0.682671 0.939616i
\(989\) 19.8541 0.631324
\(990\) 0 0
\(991\) −28.0000 −0.889449 −0.444725 0.895667i \(-0.646698\pi\)
−0.444725 + 0.895667i \(0.646698\pi\)
\(992\) 1.76336 + 2.42705i 0.0559866 + 0.0770589i
\(993\) 4.35926 1.41641i 0.138337 0.0449483i
\(994\) 12.3541 38.0220i 0.391848 1.20599i
\(995\) 0 0
\(996\) 1.16312 + 0.845055i 0.0368548 + 0.0267766i
\(997\) −0.587785 0.190983i −0.0186153 0.00604849i 0.299695 0.954035i \(-0.403115\pi\)
−0.318310 + 0.947987i \(0.603115\pi\)
\(998\) 22.9641 7.46149i 0.726916 0.236189i
\(999\) −19.1074 + 13.8823i −0.604531 + 0.439218i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 550.2.ba.d.399.1 8
5.2 odd 4 550.2.h.i.201.1 yes 4
5.3 odd 4 550.2.h.a.201.1 4
5.4 even 2 inner 550.2.ba.d.399.2 8
11.4 even 5 inner 550.2.ba.d.499.2 8
55.2 even 20 6050.2.a.cj.1.2 2
55.4 even 10 inner 550.2.ba.d.499.1 8
55.13 even 20 6050.2.a.cg.1.1 2
55.37 odd 20 550.2.h.i.301.1 yes 4
55.42 odd 20 6050.2.a.br.1.2 2
55.48 odd 20 550.2.h.a.301.1 yes 4
55.53 odd 20 6050.2.a.cx.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
550.2.h.a.201.1 4 5.3 odd 4
550.2.h.a.301.1 yes 4 55.48 odd 20
550.2.h.i.201.1 yes 4 5.2 odd 4
550.2.h.i.301.1 yes 4 55.37 odd 20
550.2.ba.d.399.1 8 1.1 even 1 trivial
550.2.ba.d.399.2 8 5.4 even 2 inner
550.2.ba.d.499.1 8 55.4 even 10 inner
550.2.ba.d.499.2 8 11.4 even 5 inner
6050.2.a.br.1.2 2 55.42 odd 20
6050.2.a.cg.1.1 2 55.13 even 20
6050.2.a.cj.1.2 2 55.2 even 20
6050.2.a.cx.1.1 2 55.53 odd 20