L(s) = 1 | − 2.61i·3-s − 3.69i·5-s + 1.08i·7-s − 3.82·9-s − 2.61i·11-s + 4.82·13-s − 9.65·15-s + (3.82 − 1.53i)17-s − 5.65·19-s + 2.82·21-s + 1.08i·23-s − 8.65·25-s + 2.16i·27-s + 6.75i·29-s + 8.47i·31-s + ⋯ |
L(s) = 1 | − 1.50i·3-s − 1.65i·5-s + 0.409i·7-s − 1.27·9-s − 0.787i·11-s + 1.33·13-s − 2.49·15-s + (0.928 − 0.371i)17-s − 1.29·19-s + 0.617·21-s + 0.225i·23-s − 1.73·25-s + 0.416i·27-s + 1.25i·29-s + 1.52i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 544 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.928 + 0.371i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 544 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.928 + 0.371i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.263481 - 1.36867i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.263481 - 1.36867i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 17 | \( 1 + (-3.82 + 1.53i)T \) |
good | 3 | \( 1 + 2.61iT - 3T^{2} \) |
| 5 | \( 1 + 3.69iT - 5T^{2} \) |
| 7 | \( 1 - 1.08iT - 7T^{2} \) |
| 11 | \( 1 + 2.61iT - 11T^{2} \) |
| 13 | \( 1 - 4.82T + 13T^{2} \) |
| 19 | \( 1 + 5.65T + 19T^{2} \) |
| 23 | \( 1 - 1.08iT - 23T^{2} \) |
| 29 | \( 1 - 6.75iT - 29T^{2} \) |
| 31 | \( 1 - 8.47iT - 31T^{2} \) |
| 37 | \( 1 - 3.69iT - 37T^{2} \) |
| 41 | \( 1 + 3.06iT - 41T^{2} \) |
| 43 | \( 1 + 9.65T + 43T^{2} \) |
| 47 | \( 1 - 9.65T + 47T^{2} \) |
| 53 | \( 1 + 2T + 53T^{2} \) |
| 59 | \( 1 - 1.65T + 59T^{2} \) |
| 61 | \( 1 + 8.02iT - 61T^{2} \) |
| 67 | \( 1 - 13.6T + 67T^{2} \) |
| 71 | \( 1 + 10.6iT - 71T^{2} \) |
| 73 | \( 1 + 10.4iT - 73T^{2} \) |
| 79 | \( 1 + 3.24iT - 79T^{2} \) |
| 83 | \( 1 - 1.65T + 83T^{2} \) |
| 89 | \( 1 + 6.48T + 89T^{2} \) |
| 97 | \( 1 - 13.5iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.57013175422440207270552767256, −9.002047525289215683615194412536, −8.581305663444374559140818616683, −7.971615321763245979582020747763, −6.71390908193773099977684595441, −5.86068991974588780520265742410, −5.02764238385757375574005110906, −3.46268013760844872203272666707, −1.74453105700936061261089396722, −0.868387768855646721347110438599,
2.46976188156135358704996746972, 3.78463362003689521325316327523, 4.12325578932914131454252125114, 5.71622128586117488374939625997, 6.52304216583462538756112859172, 7.61344341019351014140973496162, 8.673921226167304782463164768139, 10.02133078856803675190788042558, 10.10380025266458420997712176918, 11.00299781210146234416636844199