sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(544, base_ring=CyclotomicField(2))
M = H._module
chi = DirichletCharacter(H, M([0,0,1]))
pari:[g,chi] = znchar(Mod(33,544))
\(\chi_{544}(33,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((511,69,513)\) → \((1,1,-1)\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(19\) | \(21\) | \(23\) |
| \( \chi_{ 544 }(33, a) \) |
\(1\) | \(1\) | \(-1\) | \(-1\) | \(-1\) | \(1\) | \(-1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(-1\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)