Properties

Label 2-5225-1.1-c1-0-51
Degree $2$
Conductor $5225$
Sign $1$
Analytic cond. $41.7218$
Root an. cond. $6.45924$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.59·2-s − 1.35·3-s + 0.535·4-s + 2.16·6-s + 0.175·7-s + 2.33·8-s − 1.15·9-s + 11-s − 0.726·12-s + 1.01·13-s − 0.279·14-s − 4.78·16-s + 3.69·17-s + 1.84·18-s + 19-s − 0.238·21-s − 1.59·22-s − 6.06·23-s − 3.16·24-s − 1.61·26-s + 5.64·27-s + 0.0940·28-s + 3.54·29-s − 0.962·31-s + 2.95·32-s − 1.35·33-s − 5.87·34-s + ⋯
L(s)  = 1  − 1.12·2-s − 0.783·3-s + 0.267·4-s + 0.882·6-s + 0.0664·7-s + 0.824·8-s − 0.385·9-s + 0.301·11-s − 0.209·12-s + 0.281·13-s − 0.0747·14-s − 1.19·16-s + 0.895·17-s + 0.434·18-s + 0.229·19-s − 0.0520·21-s − 0.339·22-s − 1.26·23-s − 0.646·24-s − 0.316·26-s + 1.08·27-s + 0.0177·28-s + 0.658·29-s − 0.172·31-s + 0.521·32-s − 0.236·33-s − 1.00·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5225\)    =    \(5^{2} \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(41.7218\)
Root analytic conductor: \(6.45924\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5225,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6178180452\)
\(L(\frac12)\) \(\approx\) \(0.6178180452\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
11 \( 1 - T \)
19 \( 1 - T \)
good2 \( 1 + 1.59T + 2T^{2} \)
3 \( 1 + 1.35T + 3T^{2} \)
7 \( 1 - 0.175T + 7T^{2} \)
13 \( 1 - 1.01T + 13T^{2} \)
17 \( 1 - 3.69T + 17T^{2} \)
23 \( 1 + 6.06T + 23T^{2} \)
29 \( 1 - 3.54T + 29T^{2} \)
31 \( 1 + 0.962T + 31T^{2} \)
37 \( 1 - 11.2T + 37T^{2} \)
41 \( 1 + 3.74T + 41T^{2} \)
43 \( 1 - 0.398T + 43T^{2} \)
47 \( 1 - 5.97T + 47T^{2} \)
53 \( 1 - 3.13T + 53T^{2} \)
59 \( 1 + 4.20T + 59T^{2} \)
61 \( 1 + 4.38T + 61T^{2} \)
67 \( 1 - 9.15T + 67T^{2} \)
71 \( 1 - 7.33T + 71T^{2} \)
73 \( 1 + 1.20T + 73T^{2} \)
79 \( 1 - 8.58T + 79T^{2} \)
83 \( 1 - 0.412T + 83T^{2} \)
89 \( 1 + 15.1T + 89T^{2} \)
97 \( 1 + 6.67T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.157699133572537271676511608847, −7.78444155308005319853883752545, −6.81332218211942682085354482438, −6.12741238454561269320660603219, −5.43916945575632247005696828357, −4.61390368334187826979546615273, −3.77678168603762581422843017890, −2.60960329894591175044921170035, −1.42916102230389665868282134645, −0.57409029324842722073526159438, 0.57409029324842722073526159438, 1.42916102230389665868282134645, 2.60960329894591175044921170035, 3.77678168603762581422843017890, 4.61390368334187826979546615273, 5.43916945575632247005696828357, 6.12741238454561269320660603219, 6.81332218211942682085354482438, 7.78444155308005319853883752545, 8.157699133572537271676511608847

Graph of the $Z$-function along the critical line