Properties

Label 2-5202-1.1-c1-0-71
Degree $2$
Conductor $5202$
Sign $-1$
Analytic cond. $41.5381$
Root an. cond. $6.44501$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 1.41·5-s − 4.24·7-s − 8-s − 1.41·10-s + 2.82·11-s + 2·13-s + 4.24·14-s + 16-s − 2·19-s + 1.41·20-s − 2.82·22-s + 7.07·23-s − 2.99·25-s − 2·26-s − 4.24·28-s − 7.07·29-s − 4.24·31-s − 32-s − 6·35-s + 4.24·37-s + 2·38-s − 1.41·40-s − 5.65·41-s + 4·43-s + 2.82·44-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s + 0.632·5-s − 1.60·7-s − 0.353·8-s − 0.447·10-s + 0.852·11-s + 0.554·13-s + 1.13·14-s + 0.250·16-s − 0.458·19-s + 0.316·20-s − 0.603·22-s + 1.47·23-s − 0.599·25-s − 0.392·26-s − 0.801·28-s − 1.31·29-s − 0.762·31-s − 0.176·32-s − 1.01·35-s + 0.697·37-s + 0.324·38-s − 0.223·40-s − 0.883·41-s + 0.609·43-s + 0.426·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5202 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5202 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5202\)    =    \(2 \cdot 3^{2} \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(41.5381\)
Root analytic conductor: \(6.44501\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5202,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
17 \( 1 \)
good5 \( 1 - 1.41T + 5T^{2} \)
7 \( 1 + 4.24T + 7T^{2} \)
11 \( 1 - 2.82T + 11T^{2} \)
13 \( 1 - 2T + 13T^{2} \)
19 \( 1 + 2T + 19T^{2} \)
23 \( 1 - 7.07T + 23T^{2} \)
29 \( 1 + 7.07T + 29T^{2} \)
31 \( 1 + 4.24T + 31T^{2} \)
37 \( 1 - 4.24T + 37T^{2} \)
41 \( 1 + 5.65T + 41T^{2} \)
43 \( 1 - 4T + 43T^{2} \)
47 \( 1 + 12T + 47T^{2} \)
53 \( 1 + 6T + 53T^{2} \)
59 \( 1 + 6T + 59T^{2} \)
61 \( 1 - 12.7T + 61T^{2} \)
67 \( 1 + 10T + 67T^{2} \)
71 \( 1 - 1.41T + 71T^{2} \)
73 \( 1 + 73T^{2} \)
79 \( 1 - 12.7T + 79T^{2} \)
83 \( 1 - 6T + 83T^{2} \)
89 \( 1 - 6T + 89T^{2} \)
97 \( 1 - 8.48T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.85053664353157576852723658443, −7.03305142136945689827890039331, −6.39456659723778672080194374139, −6.07250637441345458981486098840, −5.09566465758074781924071612193, −3.77952117497332696302969086236, −3.29914723419424734847147227171, −2.25025282138793092745830315342, −1.27725230475801522652905440572, 0, 1.27725230475801522652905440572, 2.25025282138793092745830315342, 3.29914723419424734847147227171, 3.77952117497332696302969086236, 5.09566465758074781924071612193, 6.07250637441345458981486098840, 6.39456659723778672080194374139, 7.03305142136945689827890039331, 7.85053664353157576852723658443

Graph of the $Z$-function along the critical line