Properties

Label 5202.2.a.t
Level $5202$
Weight $2$
Character orbit 5202.a
Self dual yes
Analytic conductor $41.538$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5202,2,Mod(1,5202)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5202, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5202.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5202 = 2 \cdot 3^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5202.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2,0,2,0,0,0,-2,0,0,0,0,4,0,0,2,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.5381791315\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 306)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + q^{4} + \beta q^{5} - 3 \beta q^{7} - q^{8} - \beta q^{10} + 2 \beta q^{11} + 2 q^{13} + 3 \beta q^{14} + q^{16} - 2 q^{19} + \beta q^{20} - 2 \beta q^{22} + 5 \beta q^{23} - 3 q^{25} - 2 q^{26} + \cdots - 11 q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} - 2 q^{8} + 4 q^{13} + 2 q^{16} - 4 q^{19} - 6 q^{25} - 4 q^{26} - 2 q^{32} - 12 q^{35} + 4 q^{38} + 8 q^{43} - 24 q^{47} + 22 q^{49} + 6 q^{50} + 4 q^{52} - 12 q^{53} + 8 q^{55}+ \cdots - 22 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
−1.00000 0 1.00000 −1.41421 0 4.24264 −1.00000 0 1.41421
1.2 −1.00000 0 1.00000 1.41421 0 −4.24264 −1.00000 0 −1.41421
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(17\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5202.2.a.t 2
3.b odd 2 1 5202.2.a.bd 2
17.b even 2 1 inner 5202.2.a.t 2
17.c even 4 2 306.2.b.c yes 2
51.c odd 2 1 5202.2.a.bd 2
51.f odd 4 2 306.2.b.b 2
68.f odd 4 2 2448.2.c.i 2
204.l even 4 2 2448.2.c.k 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
306.2.b.b 2 51.f odd 4 2
306.2.b.c yes 2 17.c even 4 2
2448.2.c.i 2 68.f odd 4 2
2448.2.c.k 2 204.l even 4 2
5202.2.a.t 2 1.a even 1 1 trivial
5202.2.a.t 2 17.b even 2 1 inner
5202.2.a.bd 2 3.b odd 2 1
5202.2.a.bd 2 51.c odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5202))\):

\( T_{5}^{2} - 2 \) Copy content Toggle raw display
\( T_{7}^{2} - 18 \) Copy content Toggle raw display
\( T_{23}^{2} - 50 \) Copy content Toggle raw display
\( T_{47} + 12 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 2 \) Copy content Toggle raw display
$7$ \( T^{2} - 18 \) Copy content Toggle raw display
$11$ \( T^{2} - 8 \) Copy content Toggle raw display
$13$ \( (T - 2)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( (T + 2)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 50 \) Copy content Toggle raw display
$29$ \( T^{2} - 50 \) Copy content Toggle raw display
$31$ \( T^{2} - 18 \) Copy content Toggle raw display
$37$ \( T^{2} - 18 \) Copy content Toggle raw display
$41$ \( T^{2} - 32 \) Copy content Toggle raw display
$43$ \( (T - 4)^{2} \) Copy content Toggle raw display
$47$ \( (T + 12)^{2} \) Copy content Toggle raw display
$53$ \( (T + 6)^{2} \) Copy content Toggle raw display
$59$ \( (T + 6)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} - 162 \) Copy content Toggle raw display
$67$ \( (T + 10)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} - 2 \) Copy content Toggle raw display
$73$ \( T^{2} \) Copy content Toggle raw display
$79$ \( T^{2} - 162 \) Copy content Toggle raw display
$83$ \( (T - 6)^{2} \) Copy content Toggle raw display
$89$ \( (T - 6)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} - 72 \) Copy content Toggle raw display
show more
show less