Properties

Label 2-5120-1.1-c1-0-118
Degree $2$
Conductor $5120$
Sign $-1$
Analytic cond. $40.8834$
Root an. cond. $6.39401$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.01·3-s + 5-s − 0.690·7-s + 1.05·9-s − 4.32·11-s − 3.30·13-s + 2.01·15-s + 5.28·17-s − 7.62·19-s − 1.38·21-s + 1.60·23-s + 25-s − 3.92·27-s − 2.40·29-s + 4.69·31-s − 8.71·33-s − 0.690·35-s + 11.1·37-s − 6.65·39-s − 5.49·41-s − 0.362·43-s + 1.05·45-s − 4.60·47-s − 6.52·49-s + 10.6·51-s + 7.06·53-s − 4.32·55-s + ⋯
L(s)  = 1  + 1.16·3-s + 0.447·5-s − 0.261·7-s + 0.350·9-s − 1.30·11-s − 0.916·13-s + 0.519·15-s + 1.28·17-s − 1.74·19-s − 0.303·21-s + 0.335·23-s + 0.200·25-s − 0.755·27-s − 0.447·29-s + 0.843·31-s − 1.51·33-s − 0.116·35-s + 1.83·37-s − 1.06·39-s − 0.858·41-s − 0.0552·43-s + 0.156·45-s − 0.672·47-s − 0.931·49-s + 1.49·51-s + 0.969·53-s − 0.583·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5120 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5120\)    =    \(2^{10} \cdot 5\)
Sign: $-1$
Analytic conductor: \(40.8834\)
Root analytic conductor: \(6.39401\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5120,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
good3 \( 1 - 2.01T + 3T^{2} \)
7 \( 1 + 0.690T + 7T^{2} \)
11 \( 1 + 4.32T + 11T^{2} \)
13 \( 1 + 3.30T + 13T^{2} \)
17 \( 1 - 5.28T + 17T^{2} \)
19 \( 1 + 7.62T + 19T^{2} \)
23 \( 1 - 1.60T + 23T^{2} \)
29 \( 1 + 2.40T + 29T^{2} \)
31 \( 1 - 4.69T + 31T^{2} \)
37 \( 1 - 11.1T + 37T^{2} \)
41 \( 1 + 5.49T + 41T^{2} \)
43 \( 1 + 0.362T + 43T^{2} \)
47 \( 1 + 4.60T + 47T^{2} \)
53 \( 1 - 7.06T + 53T^{2} \)
59 \( 1 + 2.07T + 59T^{2} \)
61 \( 1 + 13.1T + 61T^{2} \)
67 \( 1 + 2.75T + 67T^{2} \)
71 \( 1 + 2.32T + 71T^{2} \)
73 \( 1 + 1.29T + 73T^{2} \)
79 \( 1 + 5.01T + 79T^{2} \)
83 \( 1 + 10.3T + 83T^{2} \)
89 \( 1 + 1.81T + 89T^{2} \)
97 \( 1 - 5.27T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.973056239764656994615673083355, −7.41043597696744400803009859864, −6.44112930881613958206566184594, −5.68010069085070594085479509133, −4.89648301428768506833252379989, −4.04572255566288142428293882232, −2.83793332240171616888635804276, −2.73751411428128194726231136376, −1.67111573731761944893101197215, 0, 1.67111573731761944893101197215, 2.73751411428128194726231136376, 2.83793332240171616888635804276, 4.04572255566288142428293882232, 4.89648301428768506833252379989, 5.68010069085070594085479509133, 6.44112930881613958206566184594, 7.41043597696744400803009859864, 7.973056239764656994615673083355

Graph of the $Z$-function along the critical line