Properties

Label 5120.2.a.t.1.7
Level $5120$
Weight $2$
Character 5120.1
Self dual yes
Analytic conductor $40.883$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5120,2,Mod(1,5120)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5120, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5120.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5120 = 2^{10} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5120.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-4,0,8,0,-4,0,8,0,-8,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8834058349\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 12x^{6} - 8x^{5} + 21x^{4} + 12x^{3} - 10x^{2} - 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 80)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(3.51762\) of defining polynomial
Character \(\chi\) \(=\) 5120.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.01261 q^{3} +1.00000 q^{5} -0.690576 q^{7} +1.05061 q^{9} -4.32830 q^{11} -3.30482 q^{13} +2.01261 q^{15} +5.28770 q^{17} -7.62102 q^{19} -1.38986 q^{21} +1.60841 q^{23} +1.00000 q^{25} -3.92337 q^{27} -2.40867 q^{29} +4.69807 q^{31} -8.71119 q^{33} -0.690576 q^{35} +11.1705 q^{37} -6.65131 q^{39} -5.49891 q^{41} -0.362274 q^{43} +1.05061 q^{45} -4.60743 q^{47} -6.52310 q^{49} +10.6421 q^{51} +7.06143 q^{53} -4.32830 q^{55} -15.3382 q^{57} -2.07151 q^{59} -13.1947 q^{61} -0.725523 q^{63} -3.30482 q^{65} -2.75484 q^{67} +3.23710 q^{69} -2.32246 q^{71} -1.29733 q^{73} +2.01261 q^{75} +2.98902 q^{77} -5.01968 q^{79} -11.0480 q^{81} -10.3305 q^{83} +5.28770 q^{85} -4.84772 q^{87} -1.81564 q^{89} +2.28223 q^{91} +9.45539 q^{93} -7.62102 q^{95} +5.27038 q^{97} -4.54734 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{3} + 8 q^{5} - 4 q^{7} + 8 q^{9} - 8 q^{11} - 4 q^{15} - 16 q^{19} - 12 q^{23} + 8 q^{25} - 16 q^{27} - 4 q^{35} - 28 q^{43} + 8 q^{45} - 20 q^{47} + 8 q^{49} - 24 q^{51} - 8 q^{55} - 16 q^{59}+ \cdots - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.01261 1.16198 0.580991 0.813910i \(-0.302665\pi\)
0.580991 + 0.813910i \(0.302665\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −0.690576 −0.261013 −0.130507 0.991447i \(-0.541660\pi\)
−0.130507 + 0.991447i \(0.541660\pi\)
\(8\) 0 0
\(9\) 1.05061 0.350202
\(10\) 0 0
\(11\) −4.32830 −1.30503 −0.652516 0.757775i \(-0.726287\pi\)
−0.652516 + 0.757775i \(0.726287\pi\)
\(12\) 0 0
\(13\) −3.30482 −0.916591 −0.458296 0.888800i \(-0.651540\pi\)
−0.458296 + 0.888800i \(0.651540\pi\)
\(14\) 0 0
\(15\) 2.01261 0.519654
\(16\) 0 0
\(17\) 5.28770 1.28246 0.641228 0.767350i \(-0.278425\pi\)
0.641228 + 0.767350i \(0.278425\pi\)
\(18\) 0 0
\(19\) −7.62102 −1.74838 −0.874191 0.485583i \(-0.838607\pi\)
−0.874191 + 0.485583i \(0.838607\pi\)
\(20\) 0 0
\(21\) −1.38986 −0.303293
\(22\) 0 0
\(23\) 1.60841 0.335376 0.167688 0.985840i \(-0.446370\pi\)
0.167688 + 0.985840i \(0.446370\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −3.92337 −0.755053
\(28\) 0 0
\(29\) −2.40867 −0.447279 −0.223640 0.974672i \(-0.571794\pi\)
−0.223640 + 0.974672i \(0.571794\pi\)
\(30\) 0 0
\(31\) 4.69807 0.843798 0.421899 0.906643i \(-0.361364\pi\)
0.421899 + 0.906643i \(0.361364\pi\)
\(32\) 0 0
\(33\) −8.71119 −1.51642
\(34\) 0 0
\(35\) −0.690576 −0.116729
\(36\) 0 0
\(37\) 11.1705 1.83641 0.918207 0.396101i \(-0.129637\pi\)
0.918207 + 0.396101i \(0.129637\pi\)
\(38\) 0 0
\(39\) −6.65131 −1.06506
\(40\) 0 0
\(41\) −5.49891 −0.858785 −0.429392 0.903118i \(-0.641272\pi\)
−0.429392 + 0.903118i \(0.641272\pi\)
\(42\) 0 0
\(43\) −0.362274 −0.0552463 −0.0276231 0.999618i \(-0.508794\pi\)
−0.0276231 + 0.999618i \(0.508794\pi\)
\(44\) 0 0
\(45\) 1.05061 0.156615
\(46\) 0 0
\(47\) −4.60743 −0.672063 −0.336032 0.941851i \(-0.609085\pi\)
−0.336032 + 0.941851i \(0.609085\pi\)
\(48\) 0 0
\(49\) −6.52310 −0.931872
\(50\) 0 0
\(51\) 10.6421 1.49019
\(52\) 0 0
\(53\) 7.06143 0.969961 0.484981 0.874525i \(-0.338827\pi\)
0.484981 + 0.874525i \(0.338827\pi\)
\(54\) 0 0
\(55\) −4.32830 −0.583628
\(56\) 0 0
\(57\) −15.3382 −2.03159
\(58\) 0 0
\(59\) −2.07151 −0.269687 −0.134844 0.990867i \(-0.543053\pi\)
−0.134844 + 0.990867i \(0.543053\pi\)
\(60\) 0 0
\(61\) −13.1947 −1.68940 −0.844702 0.535237i \(-0.820222\pi\)
−0.844702 + 0.535237i \(0.820222\pi\)
\(62\) 0 0
\(63\) −0.725523 −0.0914074
\(64\) 0 0
\(65\) −3.30482 −0.409912
\(66\) 0 0
\(67\) −2.75484 −0.336558 −0.168279 0.985739i \(-0.553821\pi\)
−0.168279 + 0.985739i \(0.553821\pi\)
\(68\) 0 0
\(69\) 3.23710 0.389701
\(70\) 0 0
\(71\) −2.32246 −0.275625 −0.137813 0.990458i \(-0.544007\pi\)
−0.137813 + 0.990458i \(0.544007\pi\)
\(72\) 0 0
\(73\) −1.29733 −0.151841 −0.0759206 0.997114i \(-0.524190\pi\)
−0.0759206 + 0.997114i \(0.524190\pi\)
\(74\) 0 0
\(75\) 2.01261 0.232396
\(76\) 0 0
\(77\) 2.98902 0.340631
\(78\) 0 0
\(79\) −5.01968 −0.564758 −0.282379 0.959303i \(-0.591124\pi\)
−0.282379 + 0.959303i \(0.591124\pi\)
\(80\) 0 0
\(81\) −11.0480 −1.22756
\(82\) 0 0
\(83\) −10.3305 −1.13392 −0.566960 0.823745i \(-0.691881\pi\)
−0.566960 + 0.823745i \(0.691881\pi\)
\(84\) 0 0
\(85\) 5.28770 0.573532
\(86\) 0 0
\(87\) −4.84772 −0.519730
\(88\) 0 0
\(89\) −1.81564 −0.192458 −0.0962290 0.995359i \(-0.530678\pi\)
−0.0962290 + 0.995359i \(0.530678\pi\)
\(90\) 0 0
\(91\) 2.28223 0.239242
\(92\) 0 0
\(93\) 9.45539 0.980478
\(94\) 0 0
\(95\) −7.62102 −0.781900
\(96\) 0 0
\(97\) 5.27038 0.535126 0.267563 0.963540i \(-0.413782\pi\)
0.267563 + 0.963540i \(0.413782\pi\)
\(98\) 0 0
\(99\) −4.54734 −0.457025
\(100\) 0 0
\(101\) −19.0214 −1.89270 −0.946351 0.323142i \(-0.895261\pi\)
−0.946351 + 0.323142i \(0.895261\pi\)
\(102\) 0 0
\(103\) −2.64310 −0.260432 −0.130216 0.991486i \(-0.541567\pi\)
−0.130216 + 0.991486i \(0.541567\pi\)
\(104\) 0 0
\(105\) −1.38986 −0.135637
\(106\) 0 0
\(107\) −8.88296 −0.858748 −0.429374 0.903127i \(-0.641266\pi\)
−0.429374 + 0.903127i \(0.641266\pi\)
\(108\) 0 0
\(109\) −9.74698 −0.933592 −0.466796 0.884365i \(-0.654592\pi\)
−0.466796 + 0.884365i \(0.654592\pi\)
\(110\) 0 0
\(111\) 22.4818 2.13388
\(112\) 0 0
\(113\) −6.46108 −0.607807 −0.303904 0.952703i \(-0.598290\pi\)
−0.303904 + 0.952703i \(0.598290\pi\)
\(114\) 0 0
\(115\) 1.60841 0.149985
\(116\) 0 0
\(117\) −3.47206 −0.320992
\(118\) 0 0
\(119\) −3.65156 −0.334738
\(120\) 0 0
\(121\) 7.73420 0.703109
\(122\) 0 0
\(123\) −11.0672 −0.997892
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 16.6123 1.47411 0.737054 0.675834i \(-0.236216\pi\)
0.737054 + 0.675834i \(0.236216\pi\)
\(128\) 0 0
\(129\) −0.729117 −0.0641951
\(130\) 0 0
\(131\) −16.6479 −1.45454 −0.727269 0.686353i \(-0.759211\pi\)
−0.727269 + 0.686353i \(0.759211\pi\)
\(132\) 0 0
\(133\) 5.26289 0.456351
\(134\) 0 0
\(135\) −3.92337 −0.337670
\(136\) 0 0
\(137\) −8.41495 −0.718937 −0.359469 0.933157i \(-0.617042\pi\)
−0.359469 + 0.933157i \(0.617042\pi\)
\(138\) 0 0
\(139\) −2.14741 −0.182141 −0.0910705 0.995844i \(-0.529029\pi\)
−0.0910705 + 0.995844i \(0.529029\pi\)
\(140\) 0 0
\(141\) −9.27297 −0.780925
\(142\) 0 0
\(143\) 14.3042 1.19618
\(144\) 0 0
\(145\) −2.40867 −0.200029
\(146\) 0 0
\(147\) −13.1285 −1.08282
\(148\) 0 0
\(149\) 3.69732 0.302896 0.151448 0.988465i \(-0.451606\pi\)
0.151448 + 0.988465i \(0.451606\pi\)
\(150\) 0 0
\(151\) −12.7143 −1.03467 −0.517337 0.855782i \(-0.673077\pi\)
−0.517337 + 0.855782i \(0.673077\pi\)
\(152\) 0 0
\(153\) 5.55529 0.449119
\(154\) 0 0
\(155\) 4.69807 0.377358
\(156\) 0 0
\(157\) 10.1517 0.810191 0.405095 0.914274i \(-0.367238\pi\)
0.405095 + 0.914274i \(0.367238\pi\)
\(158\) 0 0
\(159\) 14.2119 1.12708
\(160\) 0 0
\(161\) −1.11073 −0.0875376
\(162\) 0 0
\(163\) −9.97694 −0.781454 −0.390727 0.920507i \(-0.627776\pi\)
−0.390727 + 0.920507i \(0.627776\pi\)
\(164\) 0 0
\(165\) −8.71119 −0.678165
\(166\) 0 0
\(167\) −3.90586 −0.302244 −0.151122 0.988515i \(-0.548289\pi\)
−0.151122 + 0.988515i \(0.548289\pi\)
\(168\) 0 0
\(169\) −2.07819 −0.159861
\(170\) 0 0
\(171\) −8.00669 −0.612287
\(172\) 0 0
\(173\) 11.5985 0.881819 0.440910 0.897551i \(-0.354656\pi\)
0.440910 + 0.897551i \(0.354656\pi\)
\(174\) 0 0
\(175\) −0.690576 −0.0522026
\(176\) 0 0
\(177\) −4.16914 −0.313372
\(178\) 0 0
\(179\) 4.38920 0.328064 0.164032 0.986455i \(-0.447550\pi\)
0.164032 + 0.986455i \(0.447550\pi\)
\(180\) 0 0
\(181\) 2.70172 0.200818 0.100409 0.994946i \(-0.467985\pi\)
0.100409 + 0.994946i \(0.467985\pi\)
\(182\) 0 0
\(183\) −26.5557 −1.96306
\(184\) 0 0
\(185\) 11.1705 0.821269
\(186\) 0 0
\(187\) −22.8868 −1.67365
\(188\) 0 0
\(189\) 2.70939 0.197079
\(190\) 0 0
\(191\) −5.61041 −0.405955 −0.202977 0.979183i \(-0.565062\pi\)
−0.202977 + 0.979183i \(0.565062\pi\)
\(192\) 0 0
\(193\) 3.90696 0.281229 0.140615 0.990064i \(-0.455092\pi\)
0.140615 + 0.990064i \(0.455092\pi\)
\(194\) 0 0
\(195\) −6.65131 −0.476310
\(196\) 0 0
\(197\) 0.860458 0.0613051 0.0306526 0.999530i \(-0.490241\pi\)
0.0306526 + 0.999530i \(0.490241\pi\)
\(198\) 0 0
\(199\) 15.5282 1.10076 0.550382 0.834913i \(-0.314482\pi\)
0.550382 + 0.834913i \(0.314482\pi\)
\(200\) 0 0
\(201\) −5.54443 −0.391074
\(202\) 0 0
\(203\) 1.66337 0.116746
\(204\) 0 0
\(205\) −5.49891 −0.384060
\(206\) 0 0
\(207\) 1.68980 0.117449
\(208\) 0 0
\(209\) 32.9861 2.28169
\(210\) 0 0
\(211\) −3.03350 −0.208835 −0.104417 0.994534i \(-0.533298\pi\)
−0.104417 + 0.994534i \(0.533298\pi\)
\(212\) 0 0
\(213\) −4.67421 −0.320271
\(214\) 0 0
\(215\) −0.362274 −0.0247069
\(216\) 0 0
\(217\) −3.24437 −0.220242
\(218\) 0 0
\(219\) −2.61103 −0.176437
\(220\) 0 0
\(221\) −17.4749 −1.17549
\(222\) 0 0
\(223\) 2.34794 0.157230 0.0786148 0.996905i \(-0.474950\pi\)
0.0786148 + 0.996905i \(0.474950\pi\)
\(224\) 0 0
\(225\) 1.05061 0.0700404
\(226\) 0 0
\(227\) 18.6508 1.23790 0.618948 0.785432i \(-0.287559\pi\)
0.618948 + 0.785432i \(0.287559\pi\)
\(228\) 0 0
\(229\) 13.2633 0.876467 0.438233 0.898861i \(-0.355604\pi\)
0.438233 + 0.898861i \(0.355604\pi\)
\(230\) 0 0
\(231\) 6.01574 0.395807
\(232\) 0 0
\(233\) 16.3435 1.07070 0.535350 0.844630i \(-0.320180\pi\)
0.535350 + 0.844630i \(0.320180\pi\)
\(234\) 0 0
\(235\) −4.60743 −0.300556
\(236\) 0 0
\(237\) −10.1027 −0.656239
\(238\) 0 0
\(239\) 19.3818 1.25371 0.626854 0.779137i \(-0.284342\pi\)
0.626854 + 0.779137i \(0.284342\pi\)
\(240\) 0 0
\(241\) −7.15965 −0.461193 −0.230597 0.973049i \(-0.574068\pi\)
−0.230597 + 0.973049i \(0.574068\pi\)
\(242\) 0 0
\(243\) −10.4653 −0.671350
\(244\) 0 0
\(245\) −6.52310 −0.416746
\(246\) 0 0
\(247\) 25.1861 1.60255
\(248\) 0 0
\(249\) −20.7913 −1.31759
\(250\) 0 0
\(251\) −14.7604 −0.931666 −0.465833 0.884873i \(-0.654245\pi\)
−0.465833 + 0.884873i \(0.654245\pi\)
\(252\) 0 0
\(253\) −6.96167 −0.437676
\(254\) 0 0
\(255\) 10.6421 0.666434
\(256\) 0 0
\(257\) 5.72152 0.356899 0.178449 0.983949i \(-0.442892\pi\)
0.178449 + 0.983949i \(0.442892\pi\)
\(258\) 0 0
\(259\) −7.71406 −0.479328
\(260\) 0 0
\(261\) −2.53056 −0.156638
\(262\) 0 0
\(263\) −27.1378 −1.67339 −0.836695 0.547669i \(-0.815515\pi\)
−0.836695 + 0.547669i \(0.815515\pi\)
\(264\) 0 0
\(265\) 7.06143 0.433780
\(266\) 0 0
\(267\) −3.65419 −0.223633
\(268\) 0 0
\(269\) 18.4937 1.12758 0.563790 0.825918i \(-0.309343\pi\)
0.563790 + 0.825918i \(0.309343\pi\)
\(270\) 0 0
\(271\) 6.55264 0.398044 0.199022 0.979995i \(-0.436223\pi\)
0.199022 + 0.979995i \(0.436223\pi\)
\(272\) 0 0
\(273\) 4.59324 0.277995
\(274\) 0 0
\(275\) −4.32830 −0.261006
\(276\) 0 0
\(277\) 14.5454 0.873946 0.436973 0.899475i \(-0.356051\pi\)
0.436973 + 0.899475i \(0.356051\pi\)
\(278\) 0 0
\(279\) 4.93582 0.295500
\(280\) 0 0
\(281\) 29.9714 1.78794 0.893971 0.448124i \(-0.147908\pi\)
0.893971 + 0.448124i \(0.147908\pi\)
\(282\) 0 0
\(283\) 27.0363 1.60714 0.803571 0.595209i \(-0.202931\pi\)
0.803571 + 0.595209i \(0.202931\pi\)
\(284\) 0 0
\(285\) −15.3382 −0.908554
\(286\) 0 0
\(287\) 3.79741 0.224154
\(288\) 0 0
\(289\) 10.9598 0.644695
\(290\) 0 0
\(291\) 10.6072 0.621806
\(292\) 0 0
\(293\) 10.2948 0.601428 0.300714 0.953714i \(-0.402775\pi\)
0.300714 + 0.953714i \(0.402775\pi\)
\(294\) 0 0
\(295\) −2.07151 −0.120608
\(296\) 0 0
\(297\) 16.9815 0.985369
\(298\) 0 0
\(299\) −5.31549 −0.307403
\(300\) 0 0
\(301\) 0.250178 0.0144200
\(302\) 0 0
\(303\) −38.2827 −2.19928
\(304\) 0 0
\(305\) −13.1947 −0.755525
\(306\) 0 0
\(307\) −9.94622 −0.567661 −0.283831 0.958874i \(-0.591605\pi\)
−0.283831 + 0.958874i \(0.591605\pi\)
\(308\) 0 0
\(309\) −5.31953 −0.302617
\(310\) 0 0
\(311\) 14.2833 0.809929 0.404964 0.914332i \(-0.367284\pi\)
0.404964 + 0.914332i \(0.367284\pi\)
\(312\) 0 0
\(313\) −18.4579 −1.04330 −0.521652 0.853158i \(-0.674684\pi\)
−0.521652 + 0.853158i \(0.674684\pi\)
\(314\) 0 0
\(315\) −0.725523 −0.0408786
\(316\) 0 0
\(317\) 10.2079 0.573332 0.286666 0.958031i \(-0.407453\pi\)
0.286666 + 0.958031i \(0.407453\pi\)
\(318\) 0 0
\(319\) 10.4255 0.583714
\(320\) 0 0
\(321\) −17.8780 −0.997850
\(322\) 0 0
\(323\) −40.2977 −2.24222
\(324\) 0 0
\(325\) −3.30482 −0.183318
\(326\) 0 0
\(327\) −19.6169 −1.08482
\(328\) 0 0
\(329\) 3.18178 0.175417
\(330\) 0 0
\(331\) −21.8987 −1.20366 −0.601830 0.798624i \(-0.705561\pi\)
−0.601830 + 0.798624i \(0.705561\pi\)
\(332\) 0 0
\(333\) 11.7358 0.643116
\(334\) 0 0
\(335\) −2.75484 −0.150513
\(336\) 0 0
\(337\) 26.0210 1.41746 0.708728 0.705482i \(-0.249269\pi\)
0.708728 + 0.705482i \(0.249269\pi\)
\(338\) 0 0
\(339\) −13.0036 −0.706261
\(340\) 0 0
\(341\) −20.3347 −1.10118
\(342\) 0 0
\(343\) 9.33873 0.504244
\(344\) 0 0
\(345\) 3.23710 0.174280
\(346\) 0 0
\(347\) 18.1803 0.975970 0.487985 0.872852i \(-0.337732\pi\)
0.487985 + 0.872852i \(0.337732\pi\)
\(348\) 0 0
\(349\) 28.3163 1.51574 0.757869 0.652406i \(-0.226240\pi\)
0.757869 + 0.652406i \(0.226240\pi\)
\(350\) 0 0
\(351\) 12.9660 0.692075
\(352\) 0 0
\(353\) 13.7062 0.729510 0.364755 0.931104i \(-0.381153\pi\)
0.364755 + 0.931104i \(0.381153\pi\)
\(354\) 0 0
\(355\) −2.32246 −0.123263
\(356\) 0 0
\(357\) −7.34918 −0.388960
\(358\) 0 0
\(359\) −32.3506 −1.70740 −0.853700 0.520764i \(-0.825647\pi\)
−0.853700 + 0.520764i \(0.825647\pi\)
\(360\) 0 0
\(361\) 39.0799 2.05684
\(362\) 0 0
\(363\) 15.5659 0.817000
\(364\) 0 0
\(365\) −1.29733 −0.0679055
\(366\) 0 0
\(367\) 16.3714 0.854582 0.427291 0.904114i \(-0.359468\pi\)
0.427291 + 0.904114i \(0.359468\pi\)
\(368\) 0 0
\(369\) −5.77718 −0.300748
\(370\) 0 0
\(371\) −4.87645 −0.253173
\(372\) 0 0
\(373\) −21.9657 −1.13734 −0.568671 0.822565i \(-0.692542\pi\)
−0.568671 + 0.822565i \(0.692542\pi\)
\(374\) 0 0
\(375\) 2.01261 0.103931
\(376\) 0 0
\(377\) 7.96022 0.409972
\(378\) 0 0
\(379\) −35.2900 −1.81273 −0.906364 0.422498i \(-0.861153\pi\)
−0.906364 + 0.422498i \(0.861153\pi\)
\(380\) 0 0
\(381\) 33.4342 1.71289
\(382\) 0 0
\(383\) −6.24887 −0.319302 −0.159651 0.987174i \(-0.551037\pi\)
−0.159651 + 0.987174i \(0.551037\pi\)
\(384\) 0 0
\(385\) 2.98902 0.152335
\(386\) 0 0
\(387\) −0.380607 −0.0193474
\(388\) 0 0
\(389\) 2.98119 0.151152 0.0755762 0.997140i \(-0.475920\pi\)
0.0755762 + 0.997140i \(0.475920\pi\)
\(390\) 0 0
\(391\) 8.50478 0.430105
\(392\) 0 0
\(393\) −33.5058 −1.69015
\(394\) 0 0
\(395\) −5.01968 −0.252568
\(396\) 0 0
\(397\) 33.2308 1.66780 0.833902 0.551912i \(-0.186102\pi\)
0.833902 + 0.551912i \(0.186102\pi\)
\(398\) 0 0
\(399\) 10.5922 0.530271
\(400\) 0 0
\(401\) 20.9893 1.04816 0.524078 0.851670i \(-0.324410\pi\)
0.524078 + 0.851670i \(0.324410\pi\)
\(402\) 0 0
\(403\) −15.5263 −0.773418
\(404\) 0 0
\(405\) −11.0480 −0.548982
\(406\) 0 0
\(407\) −48.3492 −2.39658
\(408\) 0 0
\(409\) 18.4025 0.909944 0.454972 0.890506i \(-0.349649\pi\)
0.454972 + 0.890506i \(0.349649\pi\)
\(410\) 0 0
\(411\) −16.9360 −0.835392
\(412\) 0 0
\(413\) 1.43053 0.0703919
\(414\) 0 0
\(415\) −10.3305 −0.507104
\(416\) 0 0
\(417\) −4.32190 −0.211644
\(418\) 0 0
\(419\) 21.1186 1.03171 0.515856 0.856675i \(-0.327474\pi\)
0.515856 + 0.856675i \(0.327474\pi\)
\(420\) 0 0
\(421\) −23.0064 −1.12126 −0.560632 0.828065i \(-0.689442\pi\)
−0.560632 + 0.828065i \(0.689442\pi\)
\(422\) 0 0
\(423\) −4.84060 −0.235358
\(424\) 0 0
\(425\) 5.28770 0.256491
\(426\) 0 0
\(427\) 9.11192 0.440957
\(428\) 0 0
\(429\) 28.7889 1.38994
\(430\) 0 0
\(431\) 7.05425 0.339791 0.169896 0.985462i \(-0.445657\pi\)
0.169896 + 0.985462i \(0.445657\pi\)
\(432\) 0 0
\(433\) 14.3192 0.688139 0.344069 0.938944i \(-0.388194\pi\)
0.344069 + 0.938944i \(0.388194\pi\)
\(434\) 0 0
\(435\) −4.84772 −0.232430
\(436\) 0 0
\(437\) −12.2577 −0.586365
\(438\) 0 0
\(439\) −25.9047 −1.23637 −0.618183 0.786034i \(-0.712131\pi\)
−0.618183 + 0.786034i \(0.712131\pi\)
\(440\) 0 0
\(441\) −6.85321 −0.326344
\(442\) 0 0
\(443\) 15.7527 0.748436 0.374218 0.927341i \(-0.377911\pi\)
0.374218 + 0.927341i \(0.377911\pi\)
\(444\) 0 0
\(445\) −1.81564 −0.0860698
\(446\) 0 0
\(447\) 7.44127 0.351960
\(448\) 0 0
\(449\) 12.6659 0.597740 0.298870 0.954294i \(-0.403390\pi\)
0.298870 + 0.954294i \(0.403390\pi\)
\(450\) 0 0
\(451\) 23.8009 1.12074
\(452\) 0 0
\(453\) −25.5889 −1.20227
\(454\) 0 0
\(455\) 2.28223 0.106992
\(456\) 0 0
\(457\) −16.9442 −0.792617 −0.396308 0.918117i \(-0.629709\pi\)
−0.396308 + 0.918117i \(0.629709\pi\)
\(458\) 0 0
\(459\) −20.7456 −0.968323
\(460\) 0 0
\(461\) −18.6518 −0.868700 −0.434350 0.900744i \(-0.643022\pi\)
−0.434350 + 0.900744i \(0.643022\pi\)
\(462\) 0 0
\(463\) −14.0955 −0.655074 −0.327537 0.944838i \(-0.606219\pi\)
−0.327537 + 0.944838i \(0.606219\pi\)
\(464\) 0 0
\(465\) 9.45539 0.438483
\(466\) 0 0
\(467\) 17.1003 0.791310 0.395655 0.918399i \(-0.370518\pi\)
0.395655 + 0.918399i \(0.370518\pi\)
\(468\) 0 0
\(469\) 1.90243 0.0878460
\(470\) 0 0
\(471\) 20.4313 0.941427
\(472\) 0 0
\(473\) 1.56803 0.0720981
\(474\) 0 0
\(475\) −7.62102 −0.349676
\(476\) 0 0
\(477\) 7.41878 0.339682
\(478\) 0 0
\(479\) −14.2523 −0.651202 −0.325601 0.945507i \(-0.605567\pi\)
−0.325601 + 0.945507i \(0.605567\pi\)
\(480\) 0 0
\(481\) −36.9163 −1.68324
\(482\) 0 0
\(483\) −2.23546 −0.101717
\(484\) 0 0
\(485\) 5.27038 0.239315
\(486\) 0 0
\(487\) 26.0424 1.18010 0.590048 0.807368i \(-0.299109\pi\)
0.590048 + 0.807368i \(0.299109\pi\)
\(488\) 0 0
\(489\) −20.0797 −0.908036
\(490\) 0 0
\(491\) 4.90447 0.221336 0.110668 0.993857i \(-0.464701\pi\)
0.110668 + 0.993857i \(0.464701\pi\)
\(492\) 0 0
\(493\) −12.7363 −0.573616
\(494\) 0 0
\(495\) −4.54734 −0.204388
\(496\) 0 0
\(497\) 1.60383 0.0719418
\(498\) 0 0
\(499\) 7.49920 0.335711 0.167855 0.985812i \(-0.446316\pi\)
0.167855 + 0.985812i \(0.446316\pi\)
\(500\) 0 0
\(501\) −7.86097 −0.351202
\(502\) 0 0
\(503\) −28.8492 −1.28632 −0.643161 0.765731i \(-0.722378\pi\)
−0.643161 + 0.765731i \(0.722378\pi\)
\(504\) 0 0
\(505\) −19.0214 −0.846442
\(506\) 0 0
\(507\) −4.18259 −0.185755
\(508\) 0 0
\(509\) −18.3802 −0.814689 −0.407344 0.913275i \(-0.633545\pi\)
−0.407344 + 0.913275i \(0.633545\pi\)
\(510\) 0 0
\(511\) 0.895906 0.0396326
\(512\) 0 0
\(513\) 29.9001 1.32012
\(514\) 0 0
\(515\) −2.64310 −0.116469
\(516\) 0 0
\(517\) 19.9424 0.877064
\(518\) 0 0
\(519\) 23.3433 1.02466
\(520\) 0 0
\(521\) 13.9833 0.612618 0.306309 0.951932i \(-0.400906\pi\)
0.306309 + 0.951932i \(0.400906\pi\)
\(522\) 0 0
\(523\) −8.91928 −0.390013 −0.195007 0.980802i \(-0.562473\pi\)
−0.195007 + 0.980802i \(0.562473\pi\)
\(524\) 0 0
\(525\) −1.38986 −0.0606585
\(526\) 0 0
\(527\) 24.8420 1.08213
\(528\) 0 0
\(529\) −20.4130 −0.887523
\(530\) 0 0
\(531\) −2.17634 −0.0944450
\(532\) 0 0
\(533\) 18.1729 0.787154
\(534\) 0 0
\(535\) −8.88296 −0.384044
\(536\) 0 0
\(537\) 8.83375 0.381204
\(538\) 0 0
\(539\) 28.2340 1.21612
\(540\) 0 0
\(541\) −5.50578 −0.236712 −0.118356 0.992971i \(-0.537762\pi\)
−0.118356 + 0.992971i \(0.537762\pi\)
\(542\) 0 0
\(543\) 5.43752 0.233346
\(544\) 0 0
\(545\) −9.74698 −0.417515
\(546\) 0 0
\(547\) −39.3683 −1.68327 −0.841633 0.540050i \(-0.818405\pi\)
−0.841633 + 0.540050i \(0.818405\pi\)
\(548\) 0 0
\(549\) −13.8624 −0.591633
\(550\) 0 0
\(551\) 18.3565 0.782014
\(552\) 0 0
\(553\) 3.46647 0.147409
\(554\) 0 0
\(555\) 22.4818 0.954300
\(556\) 0 0
\(557\) 2.12774 0.0901550 0.0450775 0.998983i \(-0.485647\pi\)
0.0450775 + 0.998983i \(0.485647\pi\)
\(558\) 0 0
\(559\) 1.19725 0.0506382
\(560\) 0 0
\(561\) −46.0622 −1.94475
\(562\) 0 0
\(563\) 9.42803 0.397344 0.198672 0.980066i \(-0.436337\pi\)
0.198672 + 0.980066i \(0.436337\pi\)
\(564\) 0 0
\(565\) −6.46108 −0.271820
\(566\) 0 0
\(567\) 7.62952 0.320410
\(568\) 0 0
\(569\) 8.38187 0.351386 0.175693 0.984445i \(-0.443783\pi\)
0.175693 + 0.984445i \(0.443783\pi\)
\(570\) 0 0
\(571\) −40.1819 −1.68156 −0.840779 0.541378i \(-0.817903\pi\)
−0.840779 + 0.541378i \(0.817903\pi\)
\(572\) 0 0
\(573\) −11.2916 −0.471712
\(574\) 0 0
\(575\) 1.60841 0.0670752
\(576\) 0 0
\(577\) 23.2045 0.966014 0.483007 0.875616i \(-0.339545\pi\)
0.483007 + 0.875616i \(0.339545\pi\)
\(578\) 0 0
\(579\) 7.86320 0.326784
\(580\) 0 0
\(581\) 7.13400 0.295968
\(582\) 0 0
\(583\) −30.5640 −1.26583
\(584\) 0 0
\(585\) −3.47206 −0.143552
\(586\) 0 0
\(587\) −15.5842 −0.643230 −0.321615 0.946871i \(-0.604226\pi\)
−0.321615 + 0.946871i \(0.604226\pi\)
\(588\) 0 0
\(589\) −35.8041 −1.47528
\(590\) 0 0
\(591\) 1.73177 0.0712354
\(592\) 0 0
\(593\) 6.98847 0.286982 0.143491 0.989652i \(-0.454167\pi\)
0.143491 + 0.989652i \(0.454167\pi\)
\(594\) 0 0
\(595\) −3.65156 −0.149699
\(596\) 0 0
\(597\) 31.2522 1.27907
\(598\) 0 0
\(599\) 39.9642 1.63289 0.816447 0.577420i \(-0.195941\pi\)
0.816447 + 0.577420i \(0.195941\pi\)
\(600\) 0 0
\(601\) 21.0830 0.859993 0.429997 0.902831i \(-0.358515\pi\)
0.429997 + 0.902831i \(0.358515\pi\)
\(602\) 0 0
\(603\) −2.89425 −0.117863
\(604\) 0 0
\(605\) 7.73420 0.314440
\(606\) 0 0
\(607\) −22.3189 −0.905897 −0.452949 0.891537i \(-0.649628\pi\)
−0.452949 + 0.891537i \(0.649628\pi\)
\(608\) 0 0
\(609\) 3.34772 0.135656
\(610\) 0 0
\(611\) 15.2267 0.616007
\(612\) 0 0
\(613\) −14.9970 −0.605725 −0.302862 0.953034i \(-0.597942\pi\)
−0.302862 + 0.953034i \(0.597942\pi\)
\(614\) 0 0
\(615\) −11.0672 −0.446271
\(616\) 0 0
\(617\) −33.7636 −1.35927 −0.679635 0.733550i \(-0.737862\pi\)
−0.679635 + 0.733550i \(0.737862\pi\)
\(618\) 0 0
\(619\) 6.88406 0.276694 0.138347 0.990384i \(-0.455821\pi\)
0.138347 + 0.990384i \(0.455821\pi\)
\(620\) 0 0
\(621\) −6.31038 −0.253227
\(622\) 0 0
\(623\) 1.25384 0.0502341
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 66.3882 2.65129
\(628\) 0 0
\(629\) 59.0661 2.35512
\(630\) 0 0
\(631\) 16.1348 0.642315 0.321157 0.947026i \(-0.395928\pi\)
0.321157 + 0.947026i \(0.395928\pi\)
\(632\) 0 0
\(633\) −6.10526 −0.242662
\(634\) 0 0
\(635\) 16.6123 0.659241
\(636\) 0 0
\(637\) 21.5577 0.854146
\(638\) 0 0
\(639\) −2.43999 −0.0965245
\(640\) 0 0
\(641\) 20.3125 0.802296 0.401148 0.916013i \(-0.368611\pi\)
0.401148 + 0.916013i \(0.368611\pi\)
\(642\) 0 0
\(643\) 11.0088 0.434146 0.217073 0.976155i \(-0.430349\pi\)
0.217073 + 0.976155i \(0.430349\pi\)
\(644\) 0 0
\(645\) −0.729117 −0.0287089
\(646\) 0 0
\(647\) 21.7693 0.855840 0.427920 0.903817i \(-0.359246\pi\)
0.427920 + 0.903817i \(0.359246\pi\)
\(648\) 0 0
\(649\) 8.96611 0.351951
\(650\) 0 0
\(651\) −6.52966 −0.255918
\(652\) 0 0
\(653\) −37.2106 −1.45616 −0.728081 0.685491i \(-0.759587\pi\)
−0.728081 + 0.685491i \(0.759587\pi\)
\(654\) 0 0
\(655\) −16.6479 −0.650489
\(656\) 0 0
\(657\) −1.36298 −0.0531751
\(658\) 0 0
\(659\) 28.6222 1.11496 0.557481 0.830190i \(-0.311768\pi\)
0.557481 + 0.830190i \(0.311768\pi\)
\(660\) 0 0
\(661\) −9.64359 −0.375092 −0.187546 0.982256i \(-0.560053\pi\)
−0.187546 + 0.982256i \(0.560053\pi\)
\(662\) 0 0
\(663\) −35.1702 −1.36590
\(664\) 0 0
\(665\) 5.26289 0.204086
\(666\) 0 0
\(667\) −3.87412 −0.150007
\(668\) 0 0
\(669\) 4.72549 0.182698
\(670\) 0 0
\(671\) 57.1105 2.20473
\(672\) 0 0
\(673\) −8.19512 −0.315899 −0.157949 0.987447i \(-0.550488\pi\)
−0.157949 + 0.987447i \(0.550488\pi\)
\(674\) 0 0
\(675\) −3.92337 −0.151011
\(676\) 0 0
\(677\) 18.2199 0.700249 0.350125 0.936703i \(-0.386139\pi\)
0.350125 + 0.936703i \(0.386139\pi\)
\(678\) 0 0
\(679\) −3.63960 −0.139675
\(680\) 0 0
\(681\) 37.5368 1.43841
\(682\) 0 0
\(683\) 21.3084 0.815344 0.407672 0.913128i \(-0.366341\pi\)
0.407672 + 0.913128i \(0.366341\pi\)
\(684\) 0 0
\(685\) −8.41495 −0.321519
\(686\) 0 0
\(687\) 26.6940 1.01844
\(688\) 0 0
\(689\) −23.3367 −0.889058
\(690\) 0 0
\(691\) 7.40670 0.281764 0.140882 0.990026i \(-0.455006\pi\)
0.140882 + 0.990026i \(0.455006\pi\)
\(692\) 0 0
\(693\) 3.14028 0.119290
\(694\) 0 0
\(695\) −2.14741 −0.0814559
\(696\) 0 0
\(697\) −29.0766 −1.10135
\(698\) 0 0
\(699\) 32.8932 1.24414
\(700\) 0 0
\(701\) −30.7824 −1.16263 −0.581317 0.813677i \(-0.697462\pi\)
−0.581317 + 0.813677i \(0.697462\pi\)
\(702\) 0 0
\(703\) −85.1304 −3.21075
\(704\) 0 0
\(705\) −9.27297 −0.349240
\(706\) 0 0
\(707\) 13.1357 0.494020
\(708\) 0 0
\(709\) −33.8906 −1.27279 −0.636394 0.771364i \(-0.719575\pi\)
−0.636394 + 0.771364i \(0.719575\pi\)
\(710\) 0 0
\(711\) −5.27371 −0.197779
\(712\) 0 0
\(713\) 7.55640 0.282990
\(714\) 0 0
\(715\) 14.3042 0.534948
\(716\) 0 0
\(717\) 39.0081 1.45679
\(718\) 0 0
\(719\) −44.4408 −1.65736 −0.828681 0.559721i \(-0.810908\pi\)
−0.828681 + 0.559721i \(0.810908\pi\)
\(720\) 0 0
\(721\) 1.82526 0.0679762
\(722\) 0 0
\(723\) −14.4096 −0.535898
\(724\) 0 0
\(725\) −2.40867 −0.0894558
\(726\) 0 0
\(727\) 46.6543 1.73031 0.865155 0.501504i \(-0.167220\pi\)
0.865155 + 0.501504i \(0.167220\pi\)
\(728\) 0 0
\(729\) 12.0815 0.447464
\(730\) 0 0
\(731\) −1.91560 −0.0708509
\(732\) 0 0
\(733\) −27.4644 −1.01442 −0.507210 0.861823i \(-0.669323\pi\)
−0.507210 + 0.861823i \(0.669323\pi\)
\(734\) 0 0
\(735\) −13.1285 −0.484251
\(736\) 0 0
\(737\) 11.9238 0.439219
\(738\) 0 0
\(739\) −29.0257 −1.06773 −0.533865 0.845570i \(-0.679261\pi\)
−0.533865 + 0.845570i \(0.679261\pi\)
\(740\) 0 0
\(741\) 50.6898 1.86214
\(742\) 0 0
\(743\) 12.9245 0.474154 0.237077 0.971491i \(-0.423811\pi\)
0.237077 + 0.971491i \(0.423811\pi\)
\(744\) 0 0
\(745\) 3.69732 0.135459
\(746\) 0 0
\(747\) −10.8533 −0.397101
\(748\) 0 0
\(749\) 6.13436 0.224145
\(750\) 0 0
\(751\) −52.2694 −1.90734 −0.953668 0.300861i \(-0.902726\pi\)
−0.953668 + 0.300861i \(0.902726\pi\)
\(752\) 0 0
\(753\) −29.7069 −1.08258
\(754\) 0 0
\(755\) −12.7143 −0.462720
\(756\) 0 0
\(757\) 48.7216 1.77082 0.885409 0.464812i \(-0.153878\pi\)
0.885409 + 0.464812i \(0.153878\pi\)
\(758\) 0 0
\(759\) −14.0111 −0.508572
\(760\) 0 0
\(761\) −47.7467 −1.73082 −0.865408 0.501067i \(-0.832941\pi\)
−0.865408 + 0.501067i \(0.832941\pi\)
\(762\) 0 0
\(763\) 6.73103 0.243680
\(764\) 0 0
\(765\) 5.55529 0.200852
\(766\) 0 0
\(767\) 6.84595 0.247193
\(768\) 0 0
\(769\) −17.9108 −0.645882 −0.322941 0.946419i \(-0.604671\pi\)
−0.322941 + 0.946419i \(0.604671\pi\)
\(770\) 0 0
\(771\) 11.5152 0.414710
\(772\) 0 0
\(773\) 5.27742 0.189815 0.0949077 0.995486i \(-0.469744\pi\)
0.0949077 + 0.995486i \(0.469744\pi\)
\(774\) 0 0
\(775\) 4.69807 0.168760
\(776\) 0 0
\(777\) −15.5254 −0.556971
\(778\) 0 0
\(779\) 41.9073 1.50148
\(780\) 0 0
\(781\) 10.0523 0.359700
\(782\) 0 0
\(783\) 9.45012 0.337720
\(784\) 0 0
\(785\) 10.1517 0.362328
\(786\) 0 0
\(787\) −3.39637 −0.121067 −0.0605337 0.998166i \(-0.519280\pi\)
−0.0605337 + 0.998166i \(0.519280\pi\)
\(788\) 0 0
\(789\) −54.6179 −1.94445
\(790\) 0 0
\(791\) 4.46187 0.158646
\(792\) 0 0
\(793\) 43.6060 1.54849
\(794\) 0 0
\(795\) 14.2119 0.504044
\(796\) 0 0
\(797\) −50.2007 −1.77820 −0.889099 0.457714i \(-0.848668\pi\)
−0.889099 + 0.457714i \(0.848668\pi\)
\(798\) 0 0
\(799\) −24.3627 −0.861892
\(800\) 0 0
\(801\) −1.90753 −0.0673992
\(802\) 0 0
\(803\) 5.61524 0.198158
\(804\) 0 0
\(805\) −1.11073 −0.0391480
\(806\) 0 0
\(807\) 37.2206 1.31023
\(808\) 0 0
\(809\) 11.9182 0.419021 0.209510 0.977806i \(-0.432813\pi\)
0.209510 + 0.977806i \(0.432813\pi\)
\(810\) 0 0
\(811\) −31.3240 −1.09994 −0.549968 0.835186i \(-0.685360\pi\)
−0.549968 + 0.835186i \(0.685360\pi\)
\(812\) 0 0
\(813\) 13.1879 0.462520
\(814\) 0 0
\(815\) −9.97694 −0.349477
\(816\) 0 0
\(817\) 2.76090 0.0965915
\(818\) 0 0
\(819\) 2.39772 0.0837832
\(820\) 0 0
\(821\) −18.9375 −0.660924 −0.330462 0.943819i \(-0.607205\pi\)
−0.330462 + 0.943819i \(0.607205\pi\)
\(822\) 0 0
\(823\) 43.9496 1.53199 0.765994 0.642848i \(-0.222247\pi\)
0.765994 + 0.642848i \(0.222247\pi\)
\(824\) 0 0
\(825\) −8.71119 −0.303285
\(826\) 0 0
\(827\) −2.53280 −0.0880740 −0.0440370 0.999030i \(-0.514022\pi\)
−0.0440370 + 0.999030i \(0.514022\pi\)
\(828\) 0 0
\(829\) −19.0889 −0.662984 −0.331492 0.943458i \(-0.607552\pi\)
−0.331492 + 0.943458i \(0.607552\pi\)
\(830\) 0 0
\(831\) 29.2742 1.01551
\(832\) 0 0
\(833\) −34.4923 −1.19509
\(834\) 0 0
\(835\) −3.90586 −0.135168
\(836\) 0 0
\(837\) −18.4323 −0.637113
\(838\) 0 0
\(839\) 14.5332 0.501741 0.250870 0.968021i \(-0.419283\pi\)
0.250870 + 0.968021i \(0.419283\pi\)
\(840\) 0 0
\(841\) −23.1983 −0.799941
\(842\) 0 0
\(843\) 60.3208 2.07756
\(844\) 0 0
\(845\) −2.07819 −0.0714919
\(846\) 0 0
\(847\) −5.34105 −0.183521
\(848\) 0 0
\(849\) 54.4136 1.86747
\(850\) 0 0
\(851\) 17.9667 0.615889
\(852\) 0 0
\(853\) −16.3817 −0.560898 −0.280449 0.959869i \(-0.590483\pi\)
−0.280449 + 0.959869i \(0.590483\pi\)
\(854\) 0 0
\(855\) −8.00669 −0.273823
\(856\) 0 0
\(857\) 15.6443 0.534399 0.267200 0.963641i \(-0.413902\pi\)
0.267200 + 0.963641i \(0.413902\pi\)
\(858\) 0 0
\(859\) −17.1044 −0.583596 −0.291798 0.956480i \(-0.594254\pi\)
−0.291798 + 0.956480i \(0.594254\pi\)
\(860\) 0 0
\(861\) 7.64272 0.260463
\(862\) 0 0
\(863\) 9.28120 0.315936 0.157968 0.987444i \(-0.449506\pi\)
0.157968 + 0.987444i \(0.449506\pi\)
\(864\) 0 0
\(865\) 11.5985 0.394362
\(866\) 0 0
\(867\) 22.0579 0.749124
\(868\) 0 0
\(869\) 21.7267 0.737028
\(870\) 0 0
\(871\) 9.10425 0.308486
\(872\) 0 0
\(873\) 5.53709 0.187402
\(874\) 0 0
\(875\) −0.690576 −0.0233457
\(876\) 0 0
\(877\) −4.20884 −0.142122 −0.0710612 0.997472i \(-0.522639\pi\)
−0.0710612 + 0.997472i \(0.522639\pi\)
\(878\) 0 0
\(879\) 20.7194 0.698849
\(880\) 0 0
\(881\) −29.3318 −0.988214 −0.494107 0.869401i \(-0.664505\pi\)
−0.494107 + 0.869401i \(0.664505\pi\)
\(882\) 0 0
\(883\) −50.2890 −1.69236 −0.846180 0.532897i \(-0.821103\pi\)
−0.846180 + 0.532897i \(0.821103\pi\)
\(884\) 0 0
\(885\) −4.16914 −0.140144
\(886\) 0 0
\(887\) 4.51671 0.151656 0.0758282 0.997121i \(-0.475840\pi\)
0.0758282 + 0.997121i \(0.475840\pi\)
\(888\) 0 0
\(889\) −11.4721 −0.384762
\(890\) 0 0
\(891\) 47.8193 1.60201
\(892\) 0 0
\(893\) 35.1133 1.17502
\(894\) 0 0
\(895\) 4.38920 0.146715
\(896\) 0 0
\(897\) −10.6980 −0.357196
\(898\) 0 0
\(899\) −11.3161 −0.377413
\(900\) 0 0
\(901\) 37.3387 1.24393
\(902\) 0 0
\(903\) 0.503511 0.0167558
\(904\) 0 0
\(905\) 2.70172 0.0898083
\(906\) 0 0
\(907\) −7.16679 −0.237969 −0.118985 0.992896i \(-0.537964\pi\)
−0.118985 + 0.992896i \(0.537964\pi\)
\(908\) 0 0
\(909\) −19.9840 −0.662828
\(910\) 0 0
\(911\) 36.7140 1.21639 0.608194 0.793788i \(-0.291894\pi\)
0.608194 + 0.793788i \(0.291894\pi\)
\(912\) 0 0
\(913\) 44.7135 1.47980
\(914\) 0 0
\(915\) −26.5557 −0.877906
\(916\) 0 0
\(917\) 11.4967 0.379653
\(918\) 0 0
\(919\) −21.5651 −0.711365 −0.355683 0.934607i \(-0.615752\pi\)
−0.355683 + 0.934607i \(0.615752\pi\)
\(920\) 0 0
\(921\) −20.0179 −0.659612
\(922\) 0 0
\(923\) 7.67530 0.252635
\(924\) 0 0
\(925\) 11.1705 0.367283
\(926\) 0 0
\(927\) −2.77685 −0.0912038
\(928\) 0 0
\(929\) −45.6603 −1.49807 −0.749033 0.662532i \(-0.769482\pi\)
−0.749033 + 0.662532i \(0.769482\pi\)
\(930\) 0 0
\(931\) 49.7127 1.62927
\(932\) 0 0
\(933\) 28.7466 0.941123
\(934\) 0 0
\(935\) −22.8868 −0.748478
\(936\) 0 0
\(937\) −2.29807 −0.0750746 −0.0375373 0.999295i \(-0.511951\pi\)
−0.0375373 + 0.999295i \(0.511951\pi\)
\(938\) 0 0
\(939\) −37.1486 −1.21230
\(940\) 0 0
\(941\) −34.2238 −1.11566 −0.557832 0.829954i \(-0.688367\pi\)
−0.557832 + 0.829954i \(0.688367\pi\)
\(942\) 0 0
\(943\) −8.84448 −0.288016
\(944\) 0 0
\(945\) 2.70939 0.0881364
\(946\) 0 0
\(947\) −34.6739 −1.12675 −0.563375 0.826201i \(-0.690498\pi\)
−0.563375 + 0.826201i \(0.690498\pi\)
\(948\) 0 0
\(949\) 4.28744 0.139176
\(950\) 0 0
\(951\) 20.5445 0.666202
\(952\) 0 0
\(953\) −32.3462 −1.04780 −0.523898 0.851781i \(-0.675523\pi\)
−0.523898 + 0.851781i \(0.675523\pi\)
\(954\) 0 0
\(955\) −5.61041 −0.181548
\(956\) 0 0
\(957\) 20.9824 0.678265
\(958\) 0 0
\(959\) 5.81116 0.187652
\(960\) 0 0
\(961\) −8.92816 −0.288005
\(962\) 0 0
\(963\) −9.33249 −0.300735
\(964\) 0 0
\(965\) 3.90696 0.125770
\(966\) 0 0
\(967\) −14.6983 −0.472665 −0.236333 0.971672i \(-0.575946\pi\)
−0.236333 + 0.971672i \(0.575946\pi\)
\(968\) 0 0
\(969\) −81.1036 −2.60542
\(970\) 0 0
\(971\) 41.1628 1.32098 0.660489 0.750836i \(-0.270349\pi\)
0.660489 + 0.750836i \(0.270349\pi\)
\(972\) 0 0
\(973\) 1.48295 0.0475412
\(974\) 0 0
\(975\) −6.65131 −0.213012
\(976\) 0 0
\(977\) −17.3533 −0.555180 −0.277590 0.960700i \(-0.589536\pi\)
−0.277590 + 0.960700i \(0.589536\pi\)
\(978\) 0 0
\(979\) 7.85866 0.251164
\(980\) 0 0
\(981\) −10.2402 −0.326946
\(982\) 0 0
\(983\) −27.5174 −0.877668 −0.438834 0.898568i \(-0.644608\pi\)
−0.438834 + 0.898568i \(0.644608\pi\)
\(984\) 0 0
\(985\) 0.860458 0.0274165
\(986\) 0 0
\(987\) 6.40369 0.203832
\(988\) 0 0
\(989\) −0.582684 −0.0185283
\(990\) 0 0
\(991\) −6.96363 −0.221207 −0.110604 0.993865i \(-0.535278\pi\)
−0.110604 + 0.993865i \(0.535278\pi\)
\(992\) 0 0
\(993\) −44.0735 −1.39863
\(994\) 0 0
\(995\) 15.5282 0.492277
\(996\) 0 0
\(997\) −22.2103 −0.703408 −0.351704 0.936111i \(-0.614398\pi\)
−0.351704 + 0.936111i \(0.614398\pi\)
\(998\) 0 0
\(999\) −43.8259 −1.38659
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5120.2.a.t.1.7 8
4.3 odd 2 5120.2.a.v.1.2 8
8.3 odd 2 5120.2.a.s.1.7 8
8.5 even 2 5120.2.a.u.1.2 8
32.3 odd 8 640.2.l.b.161.2 16
32.5 even 8 320.2.l.a.241.2 16
32.11 odd 8 640.2.l.b.481.2 16
32.13 even 8 320.2.l.a.81.2 16
32.19 odd 8 80.2.l.a.61.5 yes 16
32.21 even 8 640.2.l.a.481.7 16
32.27 odd 8 80.2.l.a.21.5 16
32.29 even 8 640.2.l.a.161.7 16
96.5 odd 8 2880.2.t.c.2161.2 16
96.59 even 8 720.2.t.c.181.4 16
96.77 odd 8 2880.2.t.c.721.3 16
96.83 even 8 720.2.t.c.541.4 16
160.13 odd 8 1600.2.q.h.849.7 16
160.19 odd 8 400.2.l.h.301.4 16
160.27 even 8 400.2.q.g.149.1 16
160.37 odd 8 1600.2.q.h.49.7 16
160.59 odd 8 400.2.l.h.101.4 16
160.69 even 8 1600.2.l.i.1201.7 16
160.77 odd 8 1600.2.q.g.849.2 16
160.83 even 8 400.2.q.g.349.1 16
160.109 even 8 1600.2.l.i.401.7 16
160.123 even 8 400.2.q.h.149.8 16
160.133 odd 8 1600.2.q.g.49.2 16
160.147 even 8 400.2.q.h.349.8 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
80.2.l.a.21.5 16 32.27 odd 8
80.2.l.a.61.5 yes 16 32.19 odd 8
320.2.l.a.81.2 16 32.13 even 8
320.2.l.a.241.2 16 32.5 even 8
400.2.l.h.101.4 16 160.59 odd 8
400.2.l.h.301.4 16 160.19 odd 8
400.2.q.g.149.1 16 160.27 even 8
400.2.q.g.349.1 16 160.83 even 8
400.2.q.h.149.8 16 160.123 even 8
400.2.q.h.349.8 16 160.147 even 8
640.2.l.a.161.7 16 32.29 even 8
640.2.l.a.481.7 16 32.21 even 8
640.2.l.b.161.2 16 32.3 odd 8
640.2.l.b.481.2 16 32.11 odd 8
720.2.t.c.181.4 16 96.59 even 8
720.2.t.c.541.4 16 96.83 even 8
1600.2.l.i.401.7 16 160.109 even 8
1600.2.l.i.1201.7 16 160.69 even 8
1600.2.q.g.49.2 16 160.133 odd 8
1600.2.q.g.849.2 16 160.77 odd 8
1600.2.q.h.49.7 16 160.37 odd 8
1600.2.q.h.849.7 16 160.13 odd 8
2880.2.t.c.721.3 16 96.77 odd 8
2880.2.t.c.2161.2 16 96.5 odd 8
5120.2.a.s.1.7 8 8.3 odd 2
5120.2.a.t.1.7 8 1.1 even 1 trivial
5120.2.a.u.1.2 8 8.5 even 2
5120.2.a.v.1.2 8 4.3 odd 2