L(s) = 1 | − 0.208·2-s + (−2.91 − 0.709i)3-s − 3.95·4-s + (−5.25 + 5.25i)5-s + (0.607 + 0.147i)6-s + (2.40 − 2.40i)7-s + 1.65·8-s + (7.99 + 4.13i)9-s + (1.09 − 1.09i)10-s + (−11.4 − 11.4i)11-s + (11.5 + 2.80i)12-s − 8.12·13-s + (−0.500 + 0.500i)14-s + (19.0 − 11.5i)15-s + 15.4·16-s + (−13.5 + 10.2i)17-s + ⋯ |
L(s) = 1 | − 0.104·2-s + (−0.971 − 0.236i)3-s − 0.989·4-s + (−1.05 + 1.05i)5-s + (0.101 + 0.0246i)6-s + (0.343 − 0.343i)7-s + 0.207·8-s + (0.888 + 0.459i)9-s + (0.109 − 0.109i)10-s + (−1.04 − 1.04i)11-s + (0.961 + 0.234i)12-s − 0.624·13-s + (−0.0357 + 0.0357i)14-s + (1.27 − 0.772i)15-s + 0.967·16-s + (−0.798 + 0.601i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 51 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.967 - 0.253i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 51 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.967 - 0.253i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.0136298 + 0.105827i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0136298 + 0.105827i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (2.91 + 0.709i)T \) |
| 17 | \( 1 + (13.5 - 10.2i)T \) |
good | 2 | \( 1 + 0.208T + 4T^{2} \) |
| 5 | \( 1 + (5.25 - 5.25i)T - 25iT^{2} \) |
| 7 | \( 1 + (-2.40 + 2.40i)T - 49iT^{2} \) |
| 11 | \( 1 + (11.4 + 11.4i)T + 121iT^{2} \) |
| 13 | \( 1 + 8.12T + 169T^{2} \) |
| 19 | \( 1 - 24.0iT - 361T^{2} \) |
| 23 | \( 1 + (-5.74 - 5.74i)T + 529iT^{2} \) |
| 29 | \( 1 + (11.7 - 11.7i)T - 841iT^{2} \) |
| 31 | \( 1 + (-5.33 - 5.33i)T + 961iT^{2} \) |
| 37 | \( 1 + (42.7 + 42.7i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 + (8.11 + 8.11i)T + 1.68e3iT^{2} \) |
| 43 | \( 1 + 2.45iT - 1.84e3T^{2} \) |
| 47 | \( 1 + 64.4iT - 2.20e3T^{2} \) |
| 53 | \( 1 - 9.84T + 2.80e3T^{2} \) |
| 59 | \( 1 - 73.8T + 3.48e3T^{2} \) |
| 61 | \( 1 + (55.3 - 55.3i)T - 3.72e3iT^{2} \) |
| 67 | \( 1 - 27.1T + 4.48e3T^{2} \) |
| 71 | \( 1 + (6.71 - 6.71i)T - 5.04e3iT^{2} \) |
| 73 | \( 1 + (1.60 + 1.60i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 + (64.8 - 64.8i)T - 6.24e3iT^{2} \) |
| 83 | \( 1 + 64.2T + 6.88e3T^{2} \) |
| 89 | \( 1 - 142. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-48.5 - 48.5i)T + 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.85496617699250534168990788057, −14.65497207081927693377623897313, −13.46833303990050022553604518714, −12.26600701447199569225946604776, −10.97907752688257442273658819429, −10.35350486656357174121848780663, −8.257739863971778342749493678997, −7.23323515973076952608648148754, −5.47566783326503795082671335610, −3.88225832960449190327758644504,
0.12648475512791649827639796495, 4.63674953665300073658769021198, 4.96069058168285329198338728121, 7.40251627286032629815888040473, 8.736693167935161381840105333623, 9.916317054930951956735453071015, 11.42901692726726856886134707039, 12.44898463228992838824556821540, 13.19818323646370645880585210041, 15.16698461115451395780251799223