L(s) = 1 | − 1.28·2-s + (0.662 + 2.92i)3-s − 2.35·4-s + (−2.50 + 2.50i)5-s + (−0.851 − 3.75i)6-s + (−3.77 + 3.77i)7-s + 8.15·8-s + (−8.12 + 3.87i)9-s + (3.22 − 3.22i)10-s + (8.31 + 8.31i)11-s + (−1.55 − 6.87i)12-s + 3.14·13-s + (4.84 − 4.84i)14-s + (−8.99 − 5.67i)15-s − 1.06·16-s + (9.78 − 13.9i)17-s + ⋯ |
L(s) = 1 | − 0.642·2-s + (0.220 + 0.975i)3-s − 0.587·4-s + (−0.501 + 0.501i)5-s + (−0.141 − 0.626i)6-s + (−0.539 + 0.539i)7-s + 1.01·8-s + (−0.902 + 0.430i)9-s + (0.322 − 0.322i)10-s + (0.755 + 0.755i)11-s + (−0.129 − 0.573i)12-s + 0.241·13-s + (0.346 − 0.346i)14-s + (−0.599 − 0.378i)15-s − 0.0668·16-s + (0.575 − 0.817i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 51 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.494 - 0.869i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 51 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.494 - 0.869i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.316133 + 0.543678i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.316133 + 0.543678i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.662 - 2.92i)T \) |
| 17 | \( 1 + (-9.78 + 13.9i)T \) |
good | 2 | \( 1 + 1.28T + 4T^{2} \) |
| 5 | \( 1 + (2.50 - 2.50i)T - 25iT^{2} \) |
| 7 | \( 1 + (3.77 - 3.77i)T - 49iT^{2} \) |
| 11 | \( 1 + (-8.31 - 8.31i)T + 121iT^{2} \) |
| 13 | \( 1 - 3.14T + 169T^{2} \) |
| 19 | \( 1 + 12.4iT - 361T^{2} \) |
| 23 | \( 1 + (-12.7 - 12.7i)T + 529iT^{2} \) |
| 29 | \( 1 + (27.7 - 27.7i)T - 841iT^{2} \) |
| 31 | \( 1 + (-38.3 - 38.3i)T + 961iT^{2} \) |
| 37 | \( 1 + (-9.59 - 9.59i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 + (19.4 + 19.4i)T + 1.68e3iT^{2} \) |
| 43 | \( 1 + 76.3iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 4.62iT - 2.20e3T^{2} \) |
| 53 | \( 1 - 11.0T + 2.80e3T^{2} \) |
| 59 | \( 1 - 90.6T + 3.48e3T^{2} \) |
| 61 | \( 1 + (-0.602 + 0.602i)T - 3.72e3iT^{2} \) |
| 67 | \( 1 + 122.T + 4.48e3T^{2} \) |
| 71 | \( 1 + (-64.8 + 64.8i)T - 5.04e3iT^{2} \) |
| 73 | \( 1 + (0.537 + 0.537i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 + (-90.5 + 90.5i)T - 6.24e3iT^{2} \) |
| 83 | \( 1 - 24.5T + 6.88e3T^{2} \) |
| 89 | \( 1 - 36.2iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-8.31 - 8.31i)T + 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.64641992976774153272953379237, −14.74969362736491812965930519273, −13.60080211513504529818043674194, −11.95455420991551629670654057781, −10.64936002961057596941675632894, −9.514448831419353107744942273907, −8.834485867845943833491685482853, −7.22772733575975257859312413460, −5.04921929788111506749914362293, −3.47155967695374933627002290862,
0.841413746315322516417052789639, 3.91525289456957796707245914097, 6.20903439451484117220050979291, 7.83740142875856308314137000043, 8.570896360307536154446268474960, 9.873134914960384281224781718032, 11.48808972604953722755427358405, 12.78538166681966657643328965175, 13.56632633844040243550505312673, 14.67091522550410245247835089835