L(s) = 1 | − 3.37·2-s + (−1.14 − 2.77i)3-s + 7.40·4-s + (−1.81 + 1.81i)5-s + (3.87 + 9.35i)6-s + (−8.06 + 8.06i)7-s − 11.4·8-s + (−6.36 + 6.36i)9-s + (6.14 − 6.14i)10-s + (5.55 + 5.55i)11-s + (−8.49 − 20.5i)12-s − 3.00·13-s + (27.2 − 27.2i)14-s + (7.13 + 2.95i)15-s + 9.16·16-s + (−11.3 + 12.6i)17-s + ⋯ |
L(s) = 1 | − 1.68·2-s + (−0.382 − 0.923i)3-s + 1.85·4-s + (−0.363 + 0.363i)5-s + (0.645 + 1.55i)6-s + (−1.15 + 1.15i)7-s − 1.43·8-s + (−0.707 + 0.707i)9-s + (0.614 − 0.614i)10-s + (0.505 + 0.505i)11-s + (−0.707 − 1.70i)12-s − 0.230·13-s + (1.94 − 1.94i)14-s + (0.475 + 0.197i)15-s + 0.572·16-s + (−0.666 + 0.745i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 51 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.540 - 0.841i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 51 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.540 - 0.841i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.0700426 + 0.128274i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0700426 + 0.128274i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.14 + 2.77i)T \) |
| 17 | \( 1 + (11.3 - 12.6i)T \) |
good | 2 | \( 1 + 3.37T + 4T^{2} \) |
| 5 | \( 1 + (1.81 - 1.81i)T - 25iT^{2} \) |
| 7 | \( 1 + (8.06 - 8.06i)T - 49iT^{2} \) |
| 11 | \( 1 + (-5.55 - 5.55i)T + 121iT^{2} \) |
| 13 | \( 1 + 3.00T + 169T^{2} \) |
| 19 | \( 1 + 18.5iT - 361T^{2} \) |
| 23 | \( 1 + (29.6 + 29.6i)T + 529iT^{2} \) |
| 29 | \( 1 + (19.6 - 19.6i)T - 841iT^{2} \) |
| 31 | \( 1 + (9.81 + 9.81i)T + 961iT^{2} \) |
| 37 | \( 1 + (-1.50 - 1.50i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 + (-26.4 - 26.4i)T + 1.68e3iT^{2} \) |
| 43 | \( 1 - 10.3iT - 1.84e3T^{2} \) |
| 47 | \( 1 + 28.9iT - 2.20e3T^{2} \) |
| 53 | \( 1 + 7.41T + 2.80e3T^{2} \) |
| 59 | \( 1 - 22.7T + 3.48e3T^{2} \) |
| 61 | \( 1 + (49.7 - 49.7i)T - 3.72e3iT^{2} \) |
| 67 | \( 1 - 18.0T + 4.48e3T^{2} \) |
| 71 | \( 1 + (12.6 - 12.6i)T - 5.04e3iT^{2} \) |
| 73 | \( 1 + (-84.8 - 84.8i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 + (19.0 - 19.0i)T - 6.24e3iT^{2} \) |
| 83 | \( 1 - 92.0T + 6.88e3T^{2} \) |
| 89 | \( 1 + 12.6iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (8.53 + 8.53i)T + 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−16.04840903285524077292912008212, −14.95703977161720585450095708483, −12.94119716264589962472167282283, −11.95528423085432051858800119866, −10.88929999833664045266243655355, −9.490765276098300514115344651265, −8.485940449878477821374059799519, −7.10961505322389655079618811402, −6.24648169092433496782794047842, −2.32917241639422969793909616785,
0.24677731281228048928395084702, 3.84798756616340850923630319535, 6.31955479168377785353800184322, 7.73795810861957660671381186561, 9.218830577266152829420127887177, 9.900249044008014351794629383888, 10.88742771499567745127588723765, 12.00546686652650611742497845501, 13.89084854769617322605569956026, 15.72893343991412351501795923689