Properties

Label 4-504e2-1.1-c0e2-0-1
Degree $4$
Conductor $254016$
Sign $1$
Analytic cond. $0.0632667$
Root an. cond. $0.501526$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s + 2·7-s + 16-s − 2·25-s − 2·28-s + 3·49-s − 64-s − 4·79-s + 2·100-s + 2·112-s − 2·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 2·169-s + 173-s − 4·175-s + 179-s + 181-s + 191-s + 193-s + ⋯
L(s)  = 1  − 4-s + 2·7-s + 16-s − 2·25-s − 2·28-s + 3·49-s − 64-s − 4·79-s + 2·100-s + 2·112-s − 2·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 2·169-s + 173-s − 4·175-s + 179-s + 181-s + 191-s + 193-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 254016 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 254016 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(254016\)    =    \(2^{6} \cdot 3^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(0.0632667\)
Root analytic conductor: \(0.501526\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 254016,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.7387514190\)
\(L(\frac12)\) \(\approx\) \(0.7387514190\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T^{2} \)
3 \( 1 \)
7$C_1$ \( ( 1 - T )^{2} \)
good5$C_2$ \( ( 1 + T^{2} )^{2} \)
11$C_2$ \( ( 1 + T^{2} )^{2} \)
13$C_2$ \( ( 1 + T^{2} )^{2} \)
17$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
19$C_2$ \( ( 1 + T^{2} )^{2} \)
23$C_2$ \( ( 1 + T^{2} )^{2} \)
29$C_2$ \( ( 1 + T^{2} )^{2} \)
31$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
37$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
41$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
43$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
47$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
53$C_2$ \( ( 1 + T^{2} )^{2} \)
59$C_2$ \( ( 1 + T^{2} )^{2} \)
61$C_2$ \( ( 1 + T^{2} )^{2} \)
67$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
71$C_2$ \( ( 1 + T^{2} )^{2} \)
73$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
79$C_1$ \( ( 1 + T )^{4} \)
83$C_2$ \( ( 1 + T^{2} )^{2} \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
97$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.47242509949491631579469741844, −11.02736288555510689890473445734, −10.35107207482332204488348574358, −10.07024174942785458389292631485, −9.627977813884985640099135376941, −9.027915968570364710771121702588, −8.534015845060712995438600939245, −8.402449026000533424865704733239, −7.67717943805798144423115023471, −7.61542465395263608247968716370, −6.97513040651102840211018154660, −5.95012340013087900626517670500, −5.79300872100055039029290891748, −5.13862652968003523422956471952, −4.75866191754171657278325285436, −4.11112593998298205424011014724, −3.92634248655435326341959254362, −2.89421827024905918171286179056, −1.98369331142917368553873576877, −1.34936159779161659946630610031, 1.34936159779161659946630610031, 1.98369331142917368553873576877, 2.89421827024905918171286179056, 3.92634248655435326341959254362, 4.11112593998298205424011014724, 4.75866191754171657278325285436, 5.13862652968003523422956471952, 5.79300872100055039029290891748, 5.95012340013087900626517670500, 6.97513040651102840211018154660, 7.61542465395263608247968716370, 7.67717943805798144423115023471, 8.402449026000533424865704733239, 8.534015845060712995438600939245, 9.027915968570364710771121702588, 9.627977813884985640099135376941, 10.07024174942785458389292631485, 10.35107207482332204488348574358, 11.02736288555510689890473445734, 11.47242509949491631579469741844

Graph of the $Z$-function along the critical line