Properties

Label 504.1.l.b
Level 504504
Weight 11
Character orbit 504.l
Analytic conductor 0.2520.252
Analytic rank 00
Dimension 22
Projective image D2D_{2}
CM/RM discs -7, -24, 168
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [504,1,Mod(181,504)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(504, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 1])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("504.181"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: N N == 504=23327 504 = 2^{3} \cdot 3^{2} \cdot 7
Weight: k k == 1 1
Character orbit: [χ][\chi] == 504.l (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.2515287663670.251528766367
Analytic rank: 00
Dimension: 22
Coefficient field: Q(i)\Q(i)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D2D_{2}
Projective field: Galois closure of Q(6,7)\Q(\sqrt{-6}, \sqrt{-7})
Artin image: D4:C2D_4:C_2
Artin field: Galois closure of 8.0.112021056.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == qiq2q4+q7+iq82iq11iq14+q162q22q25q28+2iq29iq32+2iq44+q49+iq50+2iq53+iq56+2q58q64+iq98+O(q100) q - i q^{2} - q^{4} + q^{7} + i q^{8} - 2 i q^{11} - i q^{14} + q^{16} - 2 q^{22} - q^{25} - q^{28} + 2 i q^{29} - i q^{32} + 2 i q^{44} + q^{49} + i q^{50} + 2 i q^{53} + i q^{56} + 2 q^{58} - q^{64} + \cdots - i q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q4+2q7+2q164q222q252q28+2q49+4q582q644q79+4q88+O(q100) 2 q - 2 q^{4} + 2 q^{7} + 2 q^{16} - 4 q^{22} - 2 q^{25} - 2 q^{28} + 2 q^{49} + 4 q^{58} - 2 q^{64} - 4 q^{79} + 4 q^{88}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/504Z)×\left(\mathbb{Z}/504\mathbb{Z}\right)^\times.

nn 7373 127127 253253 281281
χ(n)\chi(n) 1-1 11 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
181.1
1.00000i
1.00000i
1.00000i 0 −1.00000 0 0 1.00000 1.00000i 0 0
181.2 1.00000i 0 −1.00000 0 0 1.00000 1.00000i 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 CM by Q(7)\Q(\sqrt{-7})
24.h odd 2 1 CM by Q(6)\Q(\sqrt{-6})
168.i even 2 1 RM by Q(42)\Q(\sqrt{42})
3.b odd 2 1 inner
8.b even 2 1 inner
21.c even 2 1 inner
56.h odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 504.1.l.b 2
3.b odd 2 1 inner 504.1.l.b 2
4.b odd 2 1 2016.1.l.b 2
7.b odd 2 1 CM 504.1.l.b 2
7.c even 3 2 3528.1.bw.b 4
7.d odd 6 2 3528.1.bw.b 4
8.b even 2 1 inner 504.1.l.b 2
8.d odd 2 1 2016.1.l.b 2
12.b even 2 1 2016.1.l.b 2
21.c even 2 1 inner 504.1.l.b 2
21.g even 6 2 3528.1.bw.b 4
21.h odd 6 2 3528.1.bw.b 4
24.f even 2 1 2016.1.l.b 2
24.h odd 2 1 CM 504.1.l.b 2
28.d even 2 1 2016.1.l.b 2
56.e even 2 1 2016.1.l.b 2
56.h odd 2 1 inner 504.1.l.b 2
56.j odd 6 2 3528.1.bw.b 4
56.p even 6 2 3528.1.bw.b 4
84.h odd 2 1 2016.1.l.b 2
168.e odd 2 1 2016.1.l.b 2
168.i even 2 1 RM 504.1.l.b 2
168.s odd 6 2 3528.1.bw.b 4
168.ba even 6 2 3528.1.bw.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
504.1.l.b 2 1.a even 1 1 trivial
504.1.l.b 2 3.b odd 2 1 inner
504.1.l.b 2 7.b odd 2 1 CM
504.1.l.b 2 8.b even 2 1 inner
504.1.l.b 2 21.c even 2 1 inner
504.1.l.b 2 24.h odd 2 1 CM
504.1.l.b 2 56.h odd 2 1 inner
504.1.l.b 2 168.i even 2 1 RM
2016.1.l.b 2 4.b odd 2 1
2016.1.l.b 2 8.d odd 2 1
2016.1.l.b 2 12.b even 2 1
2016.1.l.b 2 24.f even 2 1
2016.1.l.b 2 28.d even 2 1
2016.1.l.b 2 56.e even 2 1
2016.1.l.b 2 84.h odd 2 1
2016.1.l.b 2 168.e odd 2 1
3528.1.bw.b 4 7.c even 3 2
3528.1.bw.b 4 7.d odd 6 2
3528.1.bw.b 4 21.g even 6 2
3528.1.bw.b 4 21.h odd 6 2
3528.1.bw.b 4 56.j odd 6 2
3528.1.bw.b 4 56.p even 6 2
3528.1.bw.b 4 168.s odd 6 2
3528.1.bw.b 4 168.ba even 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T112+4 T_{11}^{2} + 4 acting on S1new(504,[χ])S_{1}^{\mathrm{new}}(504, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+1 T^{2} + 1 Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 (T1)2 (T - 1)^{2} Copy content Toggle raw display
1111 T2+4 T^{2} + 4 Copy content Toggle raw display
1313 T2 T^{2} Copy content Toggle raw display
1717 T2 T^{2} Copy content Toggle raw display
1919 T2 T^{2} Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 T2+4 T^{2} + 4 Copy content Toggle raw display
3131 T2 T^{2} Copy content Toggle raw display
3737 T2 T^{2} Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 T2 T^{2} Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T2+4 T^{2} + 4 Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 T2 T^{2} Copy content Toggle raw display
6767 T2 T^{2} Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 T2 T^{2} Copy content Toggle raw display
7979 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
8383 T2 T^{2} Copy content Toggle raw display
8989 T2 T^{2} Copy content Toggle raw display
9797 T2 T^{2} Copy content Toggle raw display
show more
show less