L(s) = 1 | + (1.89 + 1.89i)2-s + 3.15i·4-s + (3.98 − 3.02i)5-s + (−9.02 − 9.02i)7-s + (1.59 − 1.59i)8-s + (13.2 + 1.81i)10-s + 3.31·11-s + (−9.63 + 9.63i)13-s − 34.1i·14-s + 18.6·16-s + (2.76 + 2.76i)17-s − 34.0i·19-s + (9.53 + 12.5i)20-s + (6.27 + 6.27i)22-s + (20.6 − 20.6i)23-s + ⋯ |
L(s) = 1 | + (0.945 + 0.945i)2-s + 0.788i·4-s + (0.796 − 0.604i)5-s + (−1.28 − 1.28i)7-s + (0.199 − 0.199i)8-s + (1.32 + 0.181i)10-s + 0.301·11-s + (−0.740 + 0.740i)13-s − 2.43i·14-s + 1.16·16-s + (0.162 + 0.162i)17-s − 1.79i·19-s + (0.476 + 0.628i)20-s + (0.285 + 0.285i)22-s + (0.898 − 0.898i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.932 + 0.359i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.932 + 0.359i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.818178885\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.818178885\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-3.98 + 3.02i)T \) |
| 11 | \( 1 - 3.31T \) |
good | 2 | \( 1 + (-1.89 - 1.89i)T + 4iT^{2} \) |
| 7 | \( 1 + (9.02 + 9.02i)T + 49iT^{2} \) |
| 13 | \( 1 + (9.63 - 9.63i)T - 169iT^{2} \) |
| 17 | \( 1 + (-2.76 - 2.76i)T + 289iT^{2} \) |
| 19 | \( 1 + 34.0iT - 361T^{2} \) |
| 23 | \( 1 + (-20.6 + 20.6i)T - 529iT^{2} \) |
| 29 | \( 1 + 23.7iT - 841T^{2} \) |
| 31 | \( 1 - 27.0T + 961T^{2} \) |
| 37 | \( 1 + (-37.1 - 37.1i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 + 43.6T + 1.68e3T^{2} \) |
| 43 | \( 1 + (20.6 - 20.6i)T - 1.84e3iT^{2} \) |
| 47 | \( 1 + (7.41 + 7.41i)T + 2.20e3iT^{2} \) |
| 53 | \( 1 + (36.6 - 36.6i)T - 2.80e3iT^{2} \) |
| 59 | \( 1 - 102. iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 16.6T + 3.72e3T^{2} \) |
| 67 | \( 1 + (-10.5 - 10.5i)T + 4.48e3iT^{2} \) |
| 71 | \( 1 - 17.2T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-8.68 + 8.68i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 + 105. iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (5.74 - 5.74i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 + 172. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-75.1 - 75.1i)T + 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.42445629679086516116307777129, −9.803051853397057114092667777535, −8.965982262335751593168056793395, −7.51133130911978040708713533403, −6.60780017671493913339005554721, −6.33563396965400832977488823754, −4.82254302428577049044573804669, −4.38317199601439369869487454398, −2.92631031125860881887000751285, −0.847931243955902893408765597522,
1.88024743214887500780138623148, 2.94521546565769775681995742125, 3.47382237409316073581003284430, 5.24277035567119230037273560389, 5.77311382692753555833137813691, 6.79435692025939089357064806219, 8.158920372299737413069374519625, 9.547942782653339963715561667059, 9.905619064005710551318462305213, 10.90025156270513932417541804939