L(s) = 1 | + (1.89 − 1.89i)2-s − 3.15i·4-s + (3.98 + 3.02i)5-s + (−9.02 + 9.02i)7-s + (1.59 + 1.59i)8-s + (13.2 − 1.81i)10-s + 3.31·11-s + (−9.63 − 9.63i)13-s + 34.1i·14-s + 18.6·16-s + (2.76 − 2.76i)17-s + 34.0i·19-s + (9.53 − 12.5i)20-s + (6.27 − 6.27i)22-s + (20.6 + 20.6i)23-s + ⋯ |
L(s) = 1 | + (0.945 − 0.945i)2-s − 0.788i·4-s + (0.796 + 0.604i)5-s + (−1.28 + 1.28i)7-s + (0.199 + 0.199i)8-s + (1.32 − 0.181i)10-s + 0.301·11-s + (−0.740 − 0.740i)13-s + 2.43i·14-s + 1.16·16-s + (0.162 − 0.162i)17-s + 1.79i·19-s + (0.476 − 0.628i)20-s + (0.285 − 0.285i)22-s + (0.898 + 0.898i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.932 - 0.359i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.932 - 0.359i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.818178885\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.818178885\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-3.98 - 3.02i)T \) |
| 11 | \( 1 - 3.31T \) |
good | 2 | \( 1 + (-1.89 + 1.89i)T - 4iT^{2} \) |
| 7 | \( 1 + (9.02 - 9.02i)T - 49iT^{2} \) |
| 13 | \( 1 + (9.63 + 9.63i)T + 169iT^{2} \) |
| 17 | \( 1 + (-2.76 + 2.76i)T - 289iT^{2} \) |
| 19 | \( 1 - 34.0iT - 361T^{2} \) |
| 23 | \( 1 + (-20.6 - 20.6i)T + 529iT^{2} \) |
| 29 | \( 1 - 23.7iT - 841T^{2} \) |
| 31 | \( 1 - 27.0T + 961T^{2} \) |
| 37 | \( 1 + (-37.1 + 37.1i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 + 43.6T + 1.68e3T^{2} \) |
| 43 | \( 1 + (20.6 + 20.6i)T + 1.84e3iT^{2} \) |
| 47 | \( 1 + (7.41 - 7.41i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 + (36.6 + 36.6i)T + 2.80e3iT^{2} \) |
| 59 | \( 1 + 102. iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 16.6T + 3.72e3T^{2} \) |
| 67 | \( 1 + (-10.5 + 10.5i)T - 4.48e3iT^{2} \) |
| 71 | \( 1 - 17.2T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-8.68 - 8.68i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 - 105. iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (5.74 + 5.74i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 - 172. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-75.1 + 75.1i)T - 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.90025156270513932417541804939, −9.905619064005710551318462305213, −9.547942782653339963715561667059, −8.158920372299737413069374519625, −6.79435692025939089357064806219, −5.77311382692753555833137813691, −5.24277035567119230037273560389, −3.47382237409316073581003284430, −2.94521546565769775681995742125, −1.88024743214887500780138623148,
0.847931243955902893408765597522, 2.92631031125860881887000751285, 4.38317199601439369869487454398, 4.82254302428577049044573804669, 6.33563396965400832977488823754, 6.60780017671493913339005554721, 7.51133130911978040708713533403, 8.965982262335751593168056793395, 9.803051853397057114092667777535, 10.42445629679086516116307777129