L(s) = 1 | + 2.09·2-s + 0.373·4-s + (3.17 + 3.86i)5-s + 2.11i·7-s − 7.58·8-s + (6.63 + 8.08i)10-s + 3.31i·11-s + 17.4i·13-s + 4.42i·14-s − 17.3·16-s + 17.3·17-s − 16.6·19-s + (1.18 + 1.44i)20-s + 6.93i·22-s − 17.6·23-s + ⋯ |
L(s) = 1 | + 1.04·2-s + 0.0934·4-s + (0.634 + 0.772i)5-s + 0.302i·7-s − 0.947·8-s + (0.663 + 0.808i)10-s + 0.301i·11-s + 1.34i·13-s + 0.316i·14-s − 1.08·16-s + 1.02·17-s − 0.878·19-s + (0.0593 + 0.0722i)20-s + 0.315i·22-s − 0.766·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0719 - 0.997i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.0719 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.498258582\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.498258582\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-3.17 - 3.86i)T \) |
| 11 | \( 1 - 3.31iT \) |
good | 2 | \( 1 - 2.09T + 4T^{2} \) |
| 7 | \( 1 - 2.11iT - 49T^{2} \) |
| 13 | \( 1 - 17.4iT - 169T^{2} \) |
| 17 | \( 1 - 17.3T + 289T^{2} \) |
| 19 | \( 1 + 16.6T + 361T^{2} \) |
| 23 | \( 1 + 17.6T + 529T^{2} \) |
| 29 | \( 1 - 38.5iT - 841T^{2} \) |
| 31 | \( 1 - 49.2T + 961T^{2} \) |
| 37 | \( 1 + 12.4iT - 1.36e3T^{2} \) |
| 41 | \( 1 + 1.84iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 19.5iT - 1.84e3T^{2} \) |
| 47 | \( 1 + 59.7T + 2.20e3T^{2} \) |
| 53 | \( 1 - 5.90T + 2.80e3T^{2} \) |
| 59 | \( 1 + 80.0iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 52.2T + 3.72e3T^{2} \) |
| 67 | \( 1 + 74.7iT - 4.48e3T^{2} \) |
| 71 | \( 1 - 75.9iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 9.20iT - 5.32e3T^{2} \) |
| 79 | \( 1 - 123.T + 6.24e3T^{2} \) |
| 83 | \( 1 + 65.5T + 6.88e3T^{2} \) |
| 89 | \( 1 - 94.2iT - 7.92e3T^{2} \) |
| 97 | \( 1 + 92.6iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.16766087764076070856420947772, −10.03949813003601504213559722789, −9.360007754088120923866783460543, −8.308196385538910488556443255710, −6.86322880596680347788558585969, −6.25712254502170357885337222950, −5.28181992306013118651221159663, −4.25644875839983144609188626900, −3.16903015898810089430677551573, −2.00267892262048990466022686668,
0.71316814823024399461846480126, 2.58857286569899324308711910746, 3.82455830440871400281814164090, 4.80048626839754111044940073752, 5.69348146346772986945239292849, 6.28845660680350658148696125308, 7.938953520483206924390047187152, 8.597714037408933278689520604882, 9.806152493951903943432166272565, 10.35213356769793521712087792762