Properties

Label 495.3.g.a.89.30
Level $495$
Weight $3$
Character 495.89
Analytic conductor $13.488$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [495,3,Mod(89,495)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(495, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("495.89"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 495.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4877730858\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 89.30
Character \(\chi\) \(=\) 495.89
Dual form 495.3.g.a.89.29

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.09140 q^{2} +0.373951 q^{4} +(3.17303 + 3.86418i) q^{5} +2.11730i q^{7} -7.58352 q^{8} +(6.63607 + 8.08155i) q^{10} +3.31662i q^{11} +17.4883i q^{13} +4.42812i q^{14} -17.3560 q^{16} +17.3754 q^{17} -16.6823 q^{19} +(1.18656 + 1.44502i) q^{20} +6.93639i q^{22} -17.6229 q^{23} +(-4.86380 + 24.5223i) q^{25} +36.5750i q^{26} +0.791768i q^{28} +38.5140i q^{29} +49.2598 q^{31} -5.96419 q^{32} +36.3388 q^{34} +(-8.18164 + 6.71826i) q^{35} -12.4676i q^{37} -34.8893 q^{38} +(-24.0627 - 29.3041i) q^{40} -1.84757i q^{41} +19.5151i q^{43} +1.24026i q^{44} -36.8565 q^{46} -59.7968 q^{47} +44.5170 q^{49} +(-10.1721 + 51.2859i) q^{50} +6.53977i q^{52} +5.90680 q^{53} +(-12.8160 + 10.5237i) q^{55} -16.0566i q^{56} +80.5481i q^{58} -80.0660i q^{59} +52.2868 q^{61} +103.022 q^{62} +56.9504 q^{64} +(-67.5779 + 55.4908i) q^{65} -74.7426i q^{67} +6.49754 q^{68} +(-17.1111 + 14.0506i) q^{70} +75.9608i q^{71} -9.20374i q^{73} -26.0748i q^{74} -6.23836 q^{76} -7.02230 q^{77} +123.270 q^{79} +(-55.0709 - 67.0666i) q^{80} -3.86401i q^{82} -65.5321 q^{83} +(55.1325 + 67.1416i) q^{85} +40.8139i q^{86} -25.1517i q^{88} +94.2528i q^{89} -37.0280 q^{91} -6.59010 q^{92} -125.059 q^{94} +(-52.9333 - 64.4633i) q^{95} -92.6881i q^{97} +93.1029 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 72 q^{4} + 8 q^{10} + 184 q^{16} - 80 q^{19} + 32 q^{25} - 16 q^{31} - 160 q^{34} - 136 q^{40} + 560 q^{46} - 104 q^{49} - 96 q^{61} + 264 q^{64} - 872 q^{70} - 176 q^{76} - 672 q^{79} + 16 q^{85}+ \cdots + 400 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/495\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(397\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.09140 1.04570 0.522850 0.852425i \(-0.324869\pi\)
0.522850 + 0.852425i \(0.324869\pi\)
\(3\) 0 0
\(4\) 0.373951 0.0934878
\(5\) 3.17303 + 3.86418i 0.634605 + 0.772836i
\(6\) 0 0
\(7\) 2.11730i 0.302472i 0.988498 + 0.151236i \(0.0483253\pi\)
−0.988498 + 0.151236i \(0.951675\pi\)
\(8\) −7.58352 −0.947940
\(9\) 0 0
\(10\) 6.63607 + 8.08155i 0.663607 + 0.808155i
\(11\) 3.31662i 0.301511i
\(12\) 0 0
\(13\) 17.4883i 1.34525i 0.739982 + 0.672627i \(0.234834\pi\)
−0.739982 + 0.672627i \(0.765166\pi\)
\(14\) 4.42812i 0.316295i
\(15\) 0 0
\(16\) −17.3560 −1.08475
\(17\) 17.3754 1.02208 0.511040 0.859557i \(-0.329260\pi\)
0.511040 + 0.859557i \(0.329260\pi\)
\(18\) 0 0
\(19\) −16.6823 −0.878014 −0.439007 0.898484i \(-0.644670\pi\)
−0.439007 + 0.898484i \(0.644670\pi\)
\(20\) 1.18656 + 1.44502i 0.0593279 + 0.0722508i
\(21\) 0 0
\(22\) 6.93639i 0.315290i
\(23\) −17.6229 −0.766213 −0.383107 0.923704i \(-0.625146\pi\)
−0.383107 + 0.923704i \(0.625146\pi\)
\(24\) 0 0
\(25\) −4.86380 + 24.5223i −0.194552 + 0.980892i
\(26\) 36.5750i 1.40673i
\(27\) 0 0
\(28\) 0.791768i 0.0282774i
\(29\) 38.5140i 1.32807i 0.747703 + 0.664034i \(0.231157\pi\)
−0.747703 + 0.664034i \(0.768843\pi\)
\(30\) 0 0
\(31\) 49.2598 1.58903 0.794513 0.607247i \(-0.207726\pi\)
0.794513 + 0.607247i \(0.207726\pi\)
\(32\) −5.96419 −0.186381
\(33\) 0 0
\(34\) 36.3388 1.06879
\(35\) −8.18164 + 6.71826i −0.233761 + 0.191950i
\(36\) 0 0
\(37\) 12.4676i 0.336963i −0.985705 0.168481i \(-0.946114\pi\)
0.985705 0.168481i \(-0.0538863\pi\)
\(38\) −34.8893 −0.918139
\(39\) 0 0
\(40\) −24.0627 29.3041i −0.601568 0.732602i
\(41\) 1.84757i 0.0450628i −0.999746 0.0225314i \(-0.992827\pi\)
0.999746 0.0225314i \(-0.00717257\pi\)
\(42\) 0 0
\(43\) 19.5151i 0.453840i 0.973913 + 0.226920i \(0.0728656\pi\)
−0.973913 + 0.226920i \(0.927134\pi\)
\(44\) 1.24026i 0.0281876i
\(45\) 0 0
\(46\) −36.8565 −0.801229
\(47\) −59.7968 −1.27227 −0.636136 0.771577i \(-0.719468\pi\)
−0.636136 + 0.771577i \(0.719468\pi\)
\(48\) 0 0
\(49\) 44.5170 0.908511
\(50\) −10.1721 + 51.2859i −0.203443 + 1.02572i
\(51\) 0 0
\(52\) 6.53977i 0.125765i
\(53\) 5.90680 0.111449 0.0557245 0.998446i \(-0.482253\pi\)
0.0557245 + 0.998446i \(0.482253\pi\)
\(54\) 0 0
\(55\) −12.8160 + 10.5237i −0.233019 + 0.191341i
\(56\) 16.0566i 0.286725i
\(57\) 0 0
\(58\) 80.5481i 1.38876i
\(59\) 80.0660i 1.35705i −0.734577 0.678525i \(-0.762619\pi\)
0.734577 0.678525i \(-0.237381\pi\)
\(60\) 0 0
\(61\) 52.2868 0.857160 0.428580 0.903504i \(-0.359014\pi\)
0.428580 + 0.903504i \(0.359014\pi\)
\(62\) 103.022 1.66164
\(63\) 0 0
\(64\) 56.9504 0.889849
\(65\) −67.5779 + 55.4908i −1.03966 + 0.853705i
\(66\) 0 0
\(67\) 74.7426i 1.11556i −0.829988 0.557781i \(-0.811653\pi\)
0.829988 0.557781i \(-0.188347\pi\)
\(68\) 6.49754 0.0955520
\(69\) 0 0
\(70\) −17.1111 + 14.0506i −0.244444 + 0.200722i
\(71\) 75.9608i 1.06987i 0.844893 + 0.534935i \(0.179664\pi\)
−0.844893 + 0.534935i \(0.820336\pi\)
\(72\) 0 0
\(73\) 9.20374i 0.126079i −0.998011 0.0630393i \(-0.979921\pi\)
0.998011 0.0630393i \(-0.0200794\pi\)
\(74\) 26.0748i 0.352362i
\(75\) 0 0
\(76\) −6.23836 −0.0820836
\(77\) −7.02230 −0.0911986
\(78\) 0 0
\(79\) 123.270 1.56038 0.780190 0.625543i \(-0.215123\pi\)
0.780190 + 0.625543i \(0.215123\pi\)
\(80\) −55.0709 67.0666i −0.688387 0.838333i
\(81\) 0 0
\(82\) 3.86401i 0.0471221i
\(83\) −65.5321 −0.789543 −0.394772 0.918779i \(-0.629176\pi\)
−0.394772 + 0.918779i \(0.629176\pi\)
\(84\) 0 0
\(85\) 55.1325 + 67.1416i 0.648618 + 0.789901i
\(86\) 40.8139i 0.474580i
\(87\) 0 0
\(88\) 25.1517i 0.285815i
\(89\) 94.2528i 1.05902i 0.848304 + 0.529510i \(0.177624\pi\)
−0.848304 + 0.529510i \(0.822376\pi\)
\(90\) 0 0
\(91\) −37.0280 −0.406901
\(92\) −6.59010 −0.0716316
\(93\) 0 0
\(94\) −125.059 −1.33041
\(95\) −52.9333 64.4633i −0.557193 0.678561i
\(96\) 0 0
\(97\) 92.6881i 0.955548i −0.878483 0.477774i \(-0.841444\pi\)
0.878483 0.477774i \(-0.158556\pi\)
\(98\) 93.1029 0.950030
\(99\) 0 0
\(100\) −1.81882 + 9.17015i −0.0181882 + 0.0917015i
\(101\) 137.609i 1.36247i −0.732065 0.681234i \(-0.761443\pi\)
0.732065 0.681234i \(-0.238557\pi\)
\(102\) 0 0
\(103\) 60.2306i 0.584763i −0.956302 0.292382i \(-0.905552\pi\)
0.956302 0.292382i \(-0.0944478\pi\)
\(104\) 132.623i 1.27522i
\(105\) 0 0
\(106\) 12.3535 0.116542
\(107\) 94.7911 0.885898 0.442949 0.896547i \(-0.353932\pi\)
0.442949 + 0.896547i \(0.353932\pi\)
\(108\) 0 0
\(109\) 92.4906 0.848537 0.424269 0.905536i \(-0.360531\pi\)
0.424269 + 0.905536i \(0.360531\pi\)
\(110\) −26.8035 + 22.0093i −0.243668 + 0.200085i
\(111\) 0 0
\(112\) 36.7478i 0.328106i
\(113\) −213.972 −1.89356 −0.946781 0.321880i \(-0.895685\pi\)
−0.946781 + 0.321880i \(0.895685\pi\)
\(114\) 0 0
\(115\) −55.9179 68.0981i −0.486243 0.592157i
\(116\) 14.4023i 0.124158i
\(117\) 0 0
\(118\) 167.450i 1.41907i
\(119\) 36.7889i 0.309150i
\(120\) 0 0
\(121\) −11.0000 −0.0909091
\(122\) 109.353 0.896332
\(123\) 0 0
\(124\) 18.4208 0.148555
\(125\) −110.192 + 59.0153i −0.881533 + 0.472123i
\(126\) 0 0
\(127\) 147.705i 1.16303i −0.813534 0.581517i \(-0.802459\pi\)
0.813534 0.581517i \(-0.197541\pi\)
\(128\) 142.963 1.11690
\(129\) 0 0
\(130\) −141.332 + 116.053i −1.08717 + 0.892719i
\(131\) 0.0345272i 0.000263566i 1.00000 0.000131783i \(4.19479e-5\pi\)
−1.00000 0.000131783i \(0.999958\pi\)
\(132\) 0 0
\(133\) 35.3214i 0.265574i
\(134\) 156.317i 1.16654i
\(135\) 0 0
\(136\) −131.766 −0.968870
\(137\) 222.917 1.62713 0.813565 0.581475i \(-0.197524\pi\)
0.813565 + 0.581475i \(0.197524\pi\)
\(138\) 0 0
\(139\) 156.754 1.12773 0.563865 0.825867i \(-0.309314\pi\)
0.563865 + 0.825867i \(0.309314\pi\)
\(140\) −3.05953 + 2.51230i −0.0218538 + 0.0179450i
\(141\) 0 0
\(142\) 158.864i 1.11876i
\(143\) −58.0021 −0.405609
\(144\) 0 0
\(145\) −148.825 + 122.206i −1.02638 + 0.842799i
\(146\) 19.2487i 0.131840i
\(147\) 0 0
\(148\) 4.66229i 0.0315019i
\(149\) 203.337i 1.36468i −0.731035 0.682340i \(-0.760963\pi\)
0.731035 0.682340i \(-0.239037\pi\)
\(150\) 0 0
\(151\) −167.632 −1.11014 −0.555071 0.831803i \(-0.687309\pi\)
−0.555071 + 0.831803i \(0.687309\pi\)
\(152\) 126.510 0.832304
\(153\) 0 0
\(154\) −14.6864 −0.0953664
\(155\) 156.303 + 190.349i 1.00840 + 1.22806i
\(156\) 0 0
\(157\) 65.0769i 0.414503i 0.978288 + 0.207251i \(0.0664518\pi\)
−0.978288 + 0.207251i \(0.933548\pi\)
\(158\) 257.807 1.63169
\(159\) 0 0
\(160\) −18.9245 23.0467i −0.118278 0.144042i
\(161\) 37.3130i 0.231758i
\(162\) 0 0
\(163\) 116.690i 0.715892i 0.933742 + 0.357946i \(0.116523\pi\)
−0.933742 + 0.357946i \(0.883477\pi\)
\(164\) 0.690903i 0.00421282i
\(165\) 0 0
\(166\) −137.054 −0.825625
\(167\) −66.0772 −0.395672 −0.197836 0.980235i \(-0.563391\pi\)
−0.197836 + 0.980235i \(0.563391\pi\)
\(168\) 0 0
\(169\) −136.840 −0.809706
\(170\) 115.304 + 140.420i 0.678259 + 0.825999i
\(171\) 0 0
\(172\) 7.29770i 0.0424285i
\(173\) −3.28057 −0.0189628 −0.00948142 0.999955i \(-0.503018\pi\)
−0.00948142 + 0.999955i \(0.503018\pi\)
\(174\) 0 0
\(175\) −51.9211 10.2981i −0.296692 0.0588465i
\(176\) 57.5632i 0.327064i
\(177\) 0 0
\(178\) 197.120i 1.10742i
\(179\) 184.053i 1.02823i −0.857721 0.514115i \(-0.828120\pi\)
0.857721 0.514115i \(-0.171880\pi\)
\(180\) 0 0
\(181\) 24.9083 0.137615 0.0688074 0.997630i \(-0.478081\pi\)
0.0688074 + 0.997630i \(0.478081\pi\)
\(182\) −77.4403 −0.425496
\(183\) 0 0
\(184\) 133.644 0.726324
\(185\) 48.1772 39.5601i 0.260417 0.213839i
\(186\) 0 0
\(187\) 57.6276i 0.308169i
\(188\) −22.3611 −0.118942
\(189\) 0 0
\(190\) −110.705 134.819i −0.582656 0.709571i
\(191\) 267.905i 1.40264i 0.712845 + 0.701321i \(0.247406\pi\)
−0.712845 + 0.701321i \(0.752594\pi\)
\(192\) 0 0
\(193\) 237.746i 1.23185i 0.787806 + 0.615923i \(0.211217\pi\)
−0.787806 + 0.615923i \(0.788783\pi\)
\(194\) 193.848i 0.999216i
\(195\) 0 0
\(196\) 16.6472 0.0849347
\(197\) 265.552 1.34798 0.673989 0.738741i \(-0.264579\pi\)
0.673989 + 0.738741i \(0.264579\pi\)
\(198\) 0 0
\(199\) −14.4813 −0.0727702 −0.0363851 0.999338i \(-0.511584\pi\)
−0.0363851 + 0.999338i \(0.511584\pi\)
\(200\) 36.8847 185.965i 0.184423 0.929826i
\(201\) 0 0
\(202\) 287.796i 1.42473i
\(203\) −81.5457 −0.401703
\(204\) 0 0
\(205\) 7.13936 5.86240i 0.0348262 0.0285971i
\(206\) 125.966i 0.611487i
\(207\) 0 0
\(208\) 303.526i 1.45926i
\(209\) 55.3288i 0.264731i
\(210\) 0 0
\(211\) −69.0358 −0.327184 −0.163592 0.986528i \(-0.552308\pi\)
−0.163592 + 0.986528i \(0.552308\pi\)
\(212\) 2.20885 0.0104191
\(213\) 0 0
\(214\) 198.246 0.926383
\(215\) −75.4100 + 61.9220i −0.350744 + 0.288009i
\(216\) 0 0
\(217\) 104.298i 0.480635i
\(218\) 193.435 0.887315
\(219\) 0 0
\(220\) −4.79257 + 3.93537i −0.0217844 + 0.0178880i
\(221\) 303.865i 1.37496i
\(222\) 0 0
\(223\) 293.230i 1.31493i 0.753484 + 0.657466i \(0.228372\pi\)
−0.753484 + 0.657466i \(0.771628\pi\)
\(224\) 12.6280i 0.0563750i
\(225\) 0 0
\(226\) −447.502 −1.98010
\(227\) 66.3648 0.292356 0.146178 0.989258i \(-0.453303\pi\)
0.146178 + 0.989258i \(0.453303\pi\)
\(228\) 0 0
\(229\) 346.543 1.51329 0.756645 0.653826i \(-0.226837\pi\)
0.756645 + 0.653826i \(0.226837\pi\)
\(230\) −116.947 142.420i −0.508464 0.619219i
\(231\) 0 0
\(232\) 292.071i 1.25893i
\(233\) −324.146 −1.39119 −0.695593 0.718436i \(-0.744858\pi\)
−0.695593 + 0.718436i \(0.744858\pi\)
\(234\) 0 0
\(235\) −189.737 231.066i −0.807391 0.983258i
\(236\) 29.9408i 0.126868i
\(237\) 0 0
\(238\) 76.9403i 0.323278i
\(239\) 82.5697i 0.345480i 0.984967 + 0.172740i \(0.0552620\pi\)
−0.984967 + 0.172740i \(0.944738\pi\)
\(240\) 0 0
\(241\) 339.538 1.40887 0.704436 0.709767i \(-0.251200\pi\)
0.704436 + 0.709767i \(0.251200\pi\)
\(242\) −23.0054 −0.0950636
\(243\) 0 0
\(244\) 19.5527 0.0801340
\(245\) 141.254 + 172.022i 0.576546 + 0.702130i
\(246\) 0 0
\(247\) 291.744i 1.18115i
\(248\) −373.563 −1.50630
\(249\) 0 0
\(250\) −230.455 + 123.425i −0.921819 + 0.493699i
\(251\) 116.328i 0.463457i −0.972781 0.231728i \(-0.925562\pi\)
0.972781 0.231728i \(-0.0744380\pi\)
\(252\) 0 0
\(253\) 58.4485i 0.231022i
\(254\) 308.911i 1.21618i
\(255\) 0 0
\(256\) 71.1907 0.278089
\(257\) −364.500 −1.41829 −0.709145 0.705063i \(-0.750919\pi\)
−0.709145 + 0.705063i \(0.750919\pi\)
\(258\) 0 0
\(259\) 26.3977 0.101922
\(260\) −25.2708 + 20.7509i −0.0971956 + 0.0798110i
\(261\) 0 0
\(262\) 0.0722101i 0.000275611i
\(263\) 355.574 1.35199 0.675996 0.736906i \(-0.263714\pi\)
0.675996 + 0.736906i \(0.263714\pi\)
\(264\) 0 0
\(265\) 18.7424 + 22.8249i 0.0707261 + 0.0861318i
\(266\) 73.8712i 0.277711i
\(267\) 0 0
\(268\) 27.9501i 0.104291i
\(269\) 449.766i 1.67199i 0.548735 + 0.835996i \(0.315110\pi\)
−0.548735 + 0.835996i \(0.684890\pi\)
\(270\) 0 0
\(271\) 49.9340 0.184258 0.0921291 0.995747i \(-0.470633\pi\)
0.0921291 + 0.995747i \(0.470633\pi\)
\(272\) −301.566 −1.10870
\(273\) 0 0
\(274\) 466.208 1.70149
\(275\) −81.3313 16.1314i −0.295750 0.0586596i
\(276\) 0 0
\(277\) 525.573i 1.89737i 0.316216 + 0.948687i \(0.397588\pi\)
−0.316216 + 0.948687i \(0.602412\pi\)
\(278\) 327.836 1.17927
\(279\) 0 0
\(280\) 62.0456 50.9480i 0.221591 0.181957i
\(281\) 148.724i 0.529268i 0.964349 + 0.264634i \(0.0852511\pi\)
−0.964349 + 0.264634i \(0.914749\pi\)
\(282\) 0 0
\(283\) 225.872i 0.798134i −0.916922 0.399067i \(-0.869334\pi\)
0.916922 0.399067i \(-0.130666\pi\)
\(284\) 28.4056i 0.100020i
\(285\) 0 0
\(286\) −121.306 −0.424145
\(287\) 3.91187 0.0136302
\(288\) 0 0
\(289\) 12.9032 0.0446477
\(290\) −311.252 + 255.581i −1.07328 + 0.881314i
\(291\) 0 0
\(292\) 3.44175i 0.0117868i
\(293\) −185.601 −0.633450 −0.316725 0.948517i \(-0.602583\pi\)
−0.316725 + 0.948517i \(0.602583\pi\)
\(294\) 0 0
\(295\) 309.389 254.052i 1.04878 0.861192i
\(296\) 94.5485i 0.319420i
\(297\) 0 0
\(298\) 425.259i 1.42704i
\(299\) 308.194i 1.03075i
\(300\) 0 0
\(301\) −41.3194 −0.137274
\(302\) −350.584 −1.16088
\(303\) 0 0
\(304\) 289.537 0.952424
\(305\) 165.907 + 202.046i 0.543958 + 0.662444i
\(306\) 0 0
\(307\) 111.872i 0.364403i 0.983261 + 0.182202i \(0.0583224\pi\)
−0.983261 + 0.182202i \(0.941678\pi\)
\(308\) −2.62600 −0.00852596
\(309\) 0 0
\(310\) 326.891 + 398.096i 1.05449 + 1.28418i
\(311\) 340.464i 1.09474i −0.836891 0.547370i \(-0.815629\pi\)
0.836891 0.547370i \(-0.184371\pi\)
\(312\) 0 0
\(313\) 104.675i 0.334425i 0.985921 + 0.167213i \(0.0534767\pi\)
−0.985921 + 0.167213i \(0.946523\pi\)
\(314\) 136.102i 0.433445i
\(315\) 0 0
\(316\) 46.0970 0.145876
\(317\) −9.42536 −0.0297330 −0.0148665 0.999889i \(-0.504732\pi\)
−0.0148665 + 0.999889i \(0.504732\pi\)
\(318\) 0 0
\(319\) −127.736 −0.400427
\(320\) 180.705 + 220.067i 0.564703 + 0.687708i
\(321\) 0 0
\(322\) 78.0364i 0.242349i
\(323\) −289.861 −0.897401
\(324\) 0 0
\(325\) −428.853 85.0595i −1.31955 0.261722i
\(326\) 244.046i 0.748608i
\(327\) 0 0
\(328\) 14.0111i 0.0427168i
\(329\) 126.608i 0.384826i
\(330\) 0 0
\(331\) 495.716 1.49763 0.748816 0.662778i \(-0.230623\pi\)
0.748816 + 0.662778i \(0.230623\pi\)
\(332\) −24.5058 −0.0738127
\(333\) 0 0
\(334\) −138.194 −0.413754
\(335\) 288.819 237.160i 0.862146 0.707941i
\(336\) 0 0
\(337\) 425.429i 1.26240i 0.775619 + 0.631201i \(0.217438\pi\)
−0.775619 + 0.631201i \(0.782562\pi\)
\(338\) −286.188 −0.846709
\(339\) 0 0
\(340\) 20.6169 + 25.1077i 0.0606378 + 0.0738461i
\(341\) 163.376i 0.479109i
\(342\) 0 0
\(343\) 198.004i 0.577271i
\(344\) 147.993i 0.430213i
\(345\) 0 0
\(346\) −6.86099 −0.0198294
\(347\) −292.096 −0.841775 −0.420888 0.907113i \(-0.638281\pi\)
−0.420888 + 0.907113i \(0.638281\pi\)
\(348\) 0 0
\(349\) 526.327 1.50810 0.754050 0.656817i \(-0.228097\pi\)
0.754050 + 0.656817i \(0.228097\pi\)
\(350\) −108.588 21.5375i −0.310251 0.0615357i
\(351\) 0 0
\(352\) 19.7810i 0.0561960i
\(353\) −115.541 −0.327313 −0.163657 0.986517i \(-0.552329\pi\)
−0.163657 + 0.986517i \(0.552329\pi\)
\(354\) 0 0
\(355\) −293.526 + 241.026i −0.826835 + 0.678946i
\(356\) 35.2459i 0.0990055i
\(357\) 0 0
\(358\) 384.929i 1.07522i
\(359\) 171.524i 0.477783i −0.971046 0.238892i \(-0.923216\pi\)
0.971046 0.238892i \(-0.0767841\pi\)
\(360\) 0 0
\(361\) −82.7018 −0.229091
\(362\) 52.0931 0.143904
\(363\) 0 0
\(364\) −13.8467 −0.0380403
\(365\) 35.5649 29.2037i 0.0974382 0.0800102i
\(366\) 0 0
\(367\) 536.339i 1.46141i 0.682691 + 0.730707i \(0.260810\pi\)
−0.682691 + 0.730707i \(0.739190\pi\)
\(368\) 305.862 0.831148
\(369\) 0 0
\(370\) 100.758 82.7360i 0.272318 0.223611i
\(371\) 12.5065i 0.0337102i
\(372\) 0 0
\(373\) 341.058i 0.914365i −0.889373 0.457183i \(-0.848859\pi\)
0.889373 0.457183i \(-0.151141\pi\)
\(374\) 120.522i 0.322252i
\(375\) 0 0
\(376\) 453.470 1.20604
\(377\) −673.543 −1.78659
\(378\) 0 0
\(379\) −275.593 −0.727158 −0.363579 0.931563i \(-0.618445\pi\)
−0.363579 + 0.931563i \(0.618445\pi\)
\(380\) −19.7945 24.1061i −0.0520907 0.0634372i
\(381\) 0 0
\(382\) 560.296i 1.46674i
\(383\) 482.596 1.26004 0.630021 0.776578i \(-0.283046\pi\)
0.630021 + 0.776578i \(0.283046\pi\)
\(384\) 0 0
\(385\) −22.2819 27.1354i −0.0578752 0.0704816i
\(386\) 497.223i 1.28814i
\(387\) 0 0
\(388\) 34.6608i 0.0893321i
\(389\) 301.323i 0.774609i 0.921952 + 0.387304i \(0.126594\pi\)
−0.921952 + 0.387304i \(0.873406\pi\)
\(390\) 0 0
\(391\) −306.204 −0.783131
\(392\) −337.596 −0.861213
\(393\) 0 0
\(394\) 555.375 1.40958
\(395\) 391.139 + 476.338i 0.990225 + 1.20592i
\(396\) 0 0
\(397\) 40.6659i 0.102433i −0.998688 0.0512165i \(-0.983690\pi\)
0.998688 0.0512165i \(-0.0163099\pi\)
\(398\) −30.2861 −0.0760958
\(399\) 0 0
\(400\) 84.4159 425.608i 0.211040 1.06402i
\(401\) 287.950i 0.718079i 0.933322 + 0.359039i \(0.116896\pi\)
−0.933322 + 0.359039i \(0.883104\pi\)
\(402\) 0 0
\(403\) 861.470i 2.13764i
\(404\) 51.4592i 0.127374i
\(405\) 0 0
\(406\) −170.545 −0.420061
\(407\) 41.3504 0.101598
\(408\) 0 0
\(409\) 143.744 0.351453 0.175726 0.984439i \(-0.443773\pi\)
0.175726 + 0.984439i \(0.443773\pi\)
\(410\) 14.9313 12.2606i 0.0364177 0.0299040i
\(411\) 0 0
\(412\) 22.5233i 0.0546682i
\(413\) 169.524 0.410469
\(414\) 0 0
\(415\) −207.935 253.228i −0.501049 0.610188i
\(416\) 104.303i 0.250730i
\(417\) 0 0
\(418\) 115.715i 0.276829i
\(419\) 422.567i 1.00851i 0.863554 + 0.504257i \(0.168233\pi\)
−0.863554 + 0.504257i \(0.831767\pi\)
\(420\) 0 0
\(421\) −220.688 −0.524199 −0.262099 0.965041i \(-0.584415\pi\)
−0.262099 + 0.965041i \(0.584415\pi\)
\(422\) −144.381 −0.342136
\(423\) 0 0
\(424\) −44.7943 −0.105647
\(425\) −84.5103 + 426.084i −0.198848 + 1.00255i
\(426\) 0 0
\(427\) 110.707i 0.259267i
\(428\) 35.4472 0.0828206
\(429\) 0 0
\(430\) −157.712 + 129.504i −0.366773 + 0.301171i
\(431\) 306.571i 0.711302i −0.934619 0.355651i \(-0.884259\pi\)
0.934619 0.355651i \(-0.115741\pi\)
\(432\) 0 0
\(433\) 311.097i 0.718470i −0.933247 0.359235i \(-0.883038\pi\)
0.933247 0.359235i \(-0.116962\pi\)
\(434\) 218.129i 0.502600i
\(435\) 0 0
\(436\) 34.5870 0.0793279
\(437\) 293.990 0.672746
\(438\) 0 0
\(439\) −603.127 −1.37386 −0.686932 0.726721i \(-0.741043\pi\)
−0.686932 + 0.726721i \(0.741043\pi\)
\(440\) 97.1906 79.8070i 0.220888 0.181379i
\(441\) 0 0
\(442\) 635.504i 1.43779i
\(443\) 155.198 0.350334 0.175167 0.984539i \(-0.443953\pi\)
0.175167 + 0.984539i \(0.443953\pi\)
\(444\) 0 0
\(445\) −364.210 + 299.067i −0.818449 + 0.672060i
\(446\) 613.261i 1.37502i
\(447\) 0 0
\(448\) 120.581i 0.269154i
\(449\) 7.81951i 0.0174154i −0.999962 0.00870769i \(-0.997228\pi\)
0.999962 0.00870769i \(-0.00277178\pi\)
\(450\) 0 0
\(451\) 6.12771 0.0135869
\(452\) −80.0152 −0.177025
\(453\) 0 0
\(454\) 138.795 0.305717
\(455\) −117.491 143.083i −0.258222 0.314468i
\(456\) 0 0
\(457\) 817.477i 1.78879i −0.447277 0.894395i \(-0.647606\pi\)
0.447277 0.894395i \(-0.352394\pi\)
\(458\) 724.761 1.58245
\(459\) 0 0
\(460\) −20.9106 25.4654i −0.0454578 0.0553595i
\(461\) 122.774i 0.266322i −0.991094 0.133161i \(-0.957487\pi\)
0.991094 0.133161i \(-0.0425127\pi\)
\(462\) 0 0
\(463\) 340.949i 0.736390i −0.929749 0.368195i \(-0.879976\pi\)
0.929749 0.368195i \(-0.120024\pi\)
\(464\) 668.447i 1.44062i
\(465\) 0 0
\(466\) −677.920 −1.45476
\(467\) −489.141 −1.04741 −0.523706 0.851899i \(-0.675451\pi\)
−0.523706 + 0.851899i \(0.675451\pi\)
\(468\) 0 0
\(469\) 158.253 0.337426
\(470\) −396.816 483.251i −0.844288 1.02819i
\(471\) 0 0
\(472\) 607.182i 1.28640i
\(473\) −64.7243 −0.136838
\(474\) 0 0
\(475\) 81.1392 409.088i 0.170819 0.861237i
\(476\) 13.7572i 0.0289018i
\(477\) 0 0
\(478\) 172.686i 0.361268i
\(479\) 402.120i 0.839498i 0.907640 + 0.419749i \(0.137882\pi\)
−0.907640 + 0.419749i \(0.862118\pi\)
\(480\) 0 0
\(481\) 218.038 0.453300
\(482\) 710.110 1.47326
\(483\) 0 0
\(484\) −4.11346 −0.00849889
\(485\) 358.164 294.102i 0.738482 0.606396i
\(486\) 0 0
\(487\) 230.832i 0.473987i −0.971511 0.236993i \(-0.923838\pi\)
0.971511 0.236993i \(-0.0761620\pi\)
\(488\) −396.518 −0.812536
\(489\) 0 0
\(490\) 295.418 + 359.766i 0.602894 + 0.734217i
\(491\) 819.053i 1.66813i −0.551665 0.834066i \(-0.686007\pi\)
0.551665 0.834066i \(-0.313993\pi\)
\(492\) 0 0
\(493\) 669.194i 1.35739i
\(494\) 610.154i 1.23513i
\(495\) 0 0
\(496\) −854.952 −1.72369
\(497\) −160.832 −0.323606
\(498\) 0 0
\(499\) −658.657 −1.31995 −0.659977 0.751286i \(-0.729434\pi\)
−0.659977 + 0.751286i \(0.729434\pi\)
\(500\) −41.2063 + 22.0689i −0.0824126 + 0.0441377i
\(501\) 0 0
\(502\) 243.287i 0.484636i
\(503\) −213.933 −0.425314 −0.212657 0.977127i \(-0.568212\pi\)
−0.212657 + 0.977127i \(0.568212\pi\)
\(504\) 0 0
\(505\) 531.748 436.638i 1.05297 0.864630i
\(506\) 122.239i 0.241580i
\(507\) 0 0
\(508\) 55.2346i 0.108729i
\(509\) 167.021i 0.328136i −0.986449 0.164068i \(-0.947538\pi\)
0.986449 0.164068i \(-0.0524617\pi\)
\(510\) 0 0
\(511\) 19.4871 0.0381352
\(512\) −422.963 −0.826099
\(513\) 0 0
\(514\) −762.316 −1.48310
\(515\) 232.742 191.113i 0.451926 0.371094i
\(516\) 0 0
\(517\) 198.324i 0.383605i
\(518\) 55.2082 0.106580
\(519\) 0 0
\(520\) 512.478 420.815i 0.985535 0.809261i
\(521\) 166.892i 0.320329i −0.987090 0.160165i \(-0.948797\pi\)
0.987090 0.160165i \(-0.0512025\pi\)
\(522\) 0 0
\(523\) 349.507i 0.668273i −0.942525 0.334136i \(-0.891555\pi\)
0.942525 0.334136i \(-0.108445\pi\)
\(524\) 0.0129115i 2.46402e-5i
\(525\) 0 0
\(526\) 743.647 1.41378
\(527\) 855.907 1.62411
\(528\) 0 0
\(529\) −218.433 −0.412918
\(530\) 39.1979 + 47.7360i 0.0739583 + 0.0900680i
\(531\) 0 0
\(532\) 13.2085i 0.0248280i
\(533\) 32.3109 0.0606208
\(534\) 0 0
\(535\) 300.775 + 366.290i 0.562196 + 0.684654i
\(536\) 566.812i 1.05748i
\(537\) 0 0
\(538\) 940.640i 1.74840i
\(539\) 147.646i 0.273926i
\(540\) 0 0
\(541\) 855.321 1.58100 0.790500 0.612462i \(-0.209821\pi\)
0.790500 + 0.612462i \(0.209821\pi\)
\(542\) 104.432 0.192679
\(543\) 0 0
\(544\) −103.630 −0.190496
\(545\) 293.475 + 357.400i 0.538486 + 0.655781i
\(546\) 0 0
\(547\) 176.906i 0.323411i 0.986839 + 0.161706i \(0.0516995\pi\)
−0.986839 + 0.161706i \(0.948300\pi\)
\(548\) 83.3600 0.152117
\(549\) 0 0
\(550\) −170.096 33.7372i −0.309266 0.0613404i
\(551\) 642.500i 1.16606i
\(552\) 0 0
\(553\) 261.000i 0.471971i
\(554\) 1099.18i 1.98408i
\(555\) 0 0
\(556\) 58.6185 0.105429
\(557\) 470.845 0.845324 0.422662 0.906287i \(-0.361096\pi\)
0.422662 + 0.906287i \(0.361096\pi\)
\(558\) 0 0
\(559\) −341.286 −0.610530
\(560\) 142.000 116.602i 0.253572 0.208218i
\(561\) 0 0
\(562\) 311.042i 0.553455i
\(563\) 904.919 1.60732 0.803658 0.595091i \(-0.202884\pi\)
0.803658 + 0.595091i \(0.202884\pi\)
\(564\) 0 0
\(565\) −678.940 826.828i −1.20166 1.46341i
\(566\) 472.388i 0.834608i
\(567\) 0 0
\(568\) 576.050i 1.01417i
\(569\) 36.7748i 0.0646305i 0.999478 + 0.0323153i \(0.0102881\pi\)
−0.999478 + 0.0323153i \(0.989712\pi\)
\(570\) 0 0
\(571\) 532.647 0.932831 0.466416 0.884566i \(-0.345545\pi\)
0.466416 + 0.884566i \(0.345545\pi\)
\(572\) −21.6900 −0.0379195
\(573\) 0 0
\(574\) 8.18129 0.0142531
\(575\) 85.7142 432.154i 0.149068 0.751572i
\(576\) 0 0
\(577\) 977.288i 1.69374i −0.531801 0.846870i \(-0.678484\pi\)
0.531801 0.846870i \(-0.321516\pi\)
\(578\) 26.9857 0.0466881
\(579\) 0 0
\(580\) −55.6533 + 45.6990i −0.0959539 + 0.0787914i
\(581\) 138.751i 0.238815i
\(582\) 0 0
\(583\) 19.5906i 0.0336031i
\(584\) 69.7967i 0.119515i
\(585\) 0 0
\(586\) −388.166 −0.662399
\(587\) 543.985 0.926721 0.463361 0.886170i \(-0.346643\pi\)
0.463361 + 0.886170i \(0.346643\pi\)
\(588\) 0 0
\(589\) −821.766 −1.39519
\(590\) 647.057 531.323i 1.09671 0.900548i
\(591\) 0 0
\(592\) 216.388i 0.365520i
\(593\) −1019.47 −1.71917 −0.859583 0.510997i \(-0.829276\pi\)
−0.859583 + 0.510997i \(0.829276\pi\)
\(594\) 0 0
\(595\) −142.159 + 116.732i −0.238923 + 0.196188i
\(596\) 76.0382i 0.127581i
\(597\) 0 0
\(598\) 644.558i 1.07786i
\(599\) 743.115i 1.24059i −0.784368 0.620296i \(-0.787012\pi\)
0.784368 0.620296i \(-0.212988\pi\)
\(600\) 0 0
\(601\) 499.426 0.830991 0.415496 0.909595i \(-0.363608\pi\)
0.415496 + 0.909595i \(0.363608\pi\)
\(602\) −86.4154 −0.143547
\(603\) 0 0
\(604\) −62.6860 −0.103785
\(605\) −34.9033 42.5060i −0.0576914 0.0702578i
\(606\) 0 0
\(607\) 704.828i 1.16117i −0.814201 0.580583i \(-0.802825\pi\)
0.814201 0.580583i \(-0.197175\pi\)
\(608\) 99.4962 0.163645
\(609\) 0 0
\(610\) 346.978 + 422.558i 0.568817 + 0.692718i
\(611\) 1045.74i 1.71153i
\(612\) 0 0
\(613\) 570.118i 0.930046i −0.885299 0.465023i \(-0.846046\pi\)
0.885299 0.465023i \(-0.153954\pi\)
\(614\) 233.969i 0.381056i
\(615\) 0 0
\(616\) 53.2537 0.0864508
\(617\) −691.267 −1.12037 −0.560184 0.828368i \(-0.689270\pi\)
−0.560184 + 0.828368i \(0.689270\pi\)
\(618\) 0 0
\(619\) 350.743 0.566628 0.283314 0.959027i \(-0.408566\pi\)
0.283314 + 0.959027i \(0.408566\pi\)
\(620\) 58.4496 + 71.1812i 0.0942735 + 0.114808i
\(621\) 0 0
\(622\) 712.046i 1.14477i
\(623\) −199.562 −0.320324
\(624\) 0 0
\(625\) −577.687 238.543i −0.924299 0.381669i
\(626\) 218.918i 0.349709i
\(627\) 0 0
\(628\) 24.3356i 0.0387509i
\(629\) 216.630i 0.344403i
\(630\) 0 0
\(631\) −703.703 −1.11522 −0.557609 0.830103i \(-0.688281\pi\)
−0.557609 + 0.830103i \(0.688281\pi\)
\(632\) −934.820 −1.47915
\(633\) 0 0
\(634\) −19.7122 −0.0310918
\(635\) 570.760 468.673i 0.898835 0.738067i
\(636\) 0 0
\(637\) 778.527i 1.22218i
\(638\) −267.148 −0.418727
\(639\) 0 0
\(640\) 453.625 + 552.434i 0.708788 + 0.863178i
\(641\) 277.323i 0.432641i −0.976322 0.216320i \(-0.930594\pi\)
0.976322 0.216320i \(-0.0694056\pi\)
\(642\) 0 0
\(643\) 803.516i 1.24964i −0.780770 0.624818i \(-0.785173\pi\)
0.780770 0.624818i \(-0.214827\pi\)
\(644\) 13.9532i 0.0216665i
\(645\) 0 0
\(646\) −606.214 −0.938412
\(647\) −336.726 −0.520442 −0.260221 0.965549i \(-0.583795\pi\)
−0.260221 + 0.965549i \(0.583795\pi\)
\(648\) 0 0
\(649\) 265.549 0.409166
\(650\) −896.903 177.893i −1.37985 0.273682i
\(651\) 0 0
\(652\) 43.6365i 0.0669272i
\(653\) −815.199 −1.24839 −0.624195 0.781268i \(-0.714573\pi\)
−0.624195 + 0.781268i \(0.714573\pi\)
\(654\) 0 0
\(655\) −0.133419 + 0.109556i −0.000203693 + 0.000167260i
\(656\) 32.0664i 0.0488818i
\(657\) 0 0
\(658\) 264.788i 0.402413i
\(659\) 1063.95i 1.61449i −0.590213 0.807247i \(-0.700956\pi\)
0.590213 0.807247i \(-0.299044\pi\)
\(660\) 0 0
\(661\) 22.7560 0.0344266 0.0172133 0.999852i \(-0.494521\pi\)
0.0172133 + 0.999852i \(0.494521\pi\)
\(662\) 1036.74 1.56607
\(663\) 0 0
\(664\) 496.964 0.748439
\(665\) 136.488 112.076i 0.205246 0.168535i
\(666\) 0 0
\(667\) 678.728i 1.01758i
\(668\) −24.7097 −0.0369905
\(669\) 0 0
\(670\) 604.036 495.997i 0.901546 0.740294i
\(671\) 173.416i 0.258443i
\(672\) 0 0
\(673\) 18.3044i 0.0271982i 0.999908 + 0.0135991i \(0.00432887\pi\)
−0.999908 + 0.0135991i \(0.995671\pi\)
\(674\) 889.743i 1.32009i
\(675\) 0 0
\(676\) −51.1716 −0.0756976
\(677\) −72.3895 −0.106927 −0.0534634 0.998570i \(-0.517026\pi\)
−0.0534634 + 0.998570i \(0.517026\pi\)
\(678\) 0 0
\(679\) 196.249 0.289026
\(680\) −418.098 509.169i −0.614850 0.748778i
\(681\) 0 0
\(682\) 341.685i 0.501005i
\(683\) 52.9046 0.0774592 0.0387296 0.999250i \(-0.487669\pi\)
0.0387296 + 0.999250i \(0.487669\pi\)
\(684\) 0 0
\(685\) 707.321 + 861.391i 1.03258 + 1.25750i
\(686\) 414.105i 0.603652i
\(687\) 0 0
\(688\) 338.704i 0.492302i
\(689\) 103.300i 0.149927i
\(690\) 0 0
\(691\) −157.056 −0.227288 −0.113644 0.993522i \(-0.536252\pi\)
−0.113644 + 0.993522i \(0.536252\pi\)
\(692\) −1.22677 −0.00177279
\(693\) 0 0
\(694\) −610.889 −0.880244
\(695\) 497.386 + 605.728i 0.715664 + 0.871551i
\(696\) 0 0
\(697\) 32.1023i 0.0460578i
\(698\) 1100.76 1.57702
\(699\) 0 0
\(700\) −19.4160 3.85100i −0.0277371 0.00550143i
\(701\) 755.243i 1.07738i −0.842504 0.538690i \(-0.818919\pi\)
0.842504 0.538690i \(-0.181081\pi\)
\(702\) 0 0
\(703\) 207.988i 0.295858i
\(704\) 188.883i 0.268300i
\(705\) 0 0
\(706\) −241.643 −0.342271
\(707\) 291.361 0.412108
\(708\) 0 0
\(709\) 378.768 0.534229 0.267114 0.963665i \(-0.413930\pi\)
0.267114 + 0.963665i \(0.413930\pi\)
\(710\) −613.881 + 504.081i −0.864621 + 0.709973i
\(711\) 0 0
\(712\) 714.767i 1.00389i
\(713\) −868.101 −1.21753
\(714\) 0 0
\(715\) −184.042 224.131i −0.257402 0.313469i
\(716\) 68.8269i 0.0961270i
\(717\) 0 0
\(718\) 358.726i 0.499618i
\(719\) 177.894i 0.247419i −0.992318 0.123710i \(-0.960521\pi\)
0.992318 0.123710i \(-0.0394791\pi\)
\(720\) 0 0
\(721\) 127.526 0.176874
\(722\) −172.962 −0.239560
\(723\) 0 0
\(724\) 9.31448 0.0128653
\(725\) −944.451 187.324i −1.30269 0.258378i
\(726\) 0 0
\(727\) 1326.23i 1.82425i −0.409907 0.912127i \(-0.634439\pi\)
0.409907 0.912127i \(-0.365561\pi\)
\(728\) 280.802 0.385717
\(729\) 0 0
\(730\) 74.3805 61.0767i 0.101891 0.0836667i
\(731\) 339.082i 0.463861i
\(732\) 0 0
\(733\) 388.490i 0.530000i 0.964248 + 0.265000i \(0.0853720\pi\)
−0.964248 + 0.265000i \(0.914628\pi\)
\(734\) 1121.70i 1.52820i
\(735\) 0 0
\(736\) 105.106 0.142808
\(737\) 247.893 0.336354
\(738\) 0 0
\(739\) −688.983 −0.932319 −0.466159 0.884701i \(-0.654363\pi\)
−0.466159 + 0.884701i \(0.654363\pi\)
\(740\) 18.0159 14.7936i 0.0243458 0.0199913i
\(741\) 0 0
\(742\) 26.1560i 0.0352507i
\(743\) 547.962 0.737499 0.368749 0.929529i \(-0.379786\pi\)
0.368749 + 0.929529i \(0.379786\pi\)
\(744\) 0 0
\(745\) 785.732 645.194i 1.05467 0.866033i
\(746\) 713.289i 0.956152i
\(747\) 0 0
\(748\) 21.5499i 0.0288100i
\(749\) 200.701i 0.267959i
\(750\) 0 0
\(751\) 908.961 1.21033 0.605167 0.796098i \(-0.293106\pi\)
0.605167 + 0.796098i \(0.293106\pi\)
\(752\) 1037.83 1.38009
\(753\) 0 0
\(754\) −1408.65 −1.86823
\(755\) −531.899 647.759i −0.704502 0.857958i
\(756\) 0 0
\(757\) 1495.35i 1.97536i 0.156477 + 0.987682i \(0.449986\pi\)
−0.156477 + 0.987682i \(0.550014\pi\)
\(758\) −576.375 −0.760389
\(759\) 0 0
\(760\) 401.421 + 488.859i 0.528185 + 0.643235i
\(761\) 1361.43i 1.78900i 0.447067 + 0.894501i \(0.352469\pi\)
−0.447067 + 0.894501i \(0.647531\pi\)
\(762\) 0 0
\(763\) 195.830i 0.256659i
\(764\) 100.183i 0.131130i
\(765\) 0 0
\(766\) 1009.30 1.31763
\(767\) 1400.22 1.82558
\(768\) 0 0
\(769\) −339.978 −0.442104 −0.221052 0.975262i \(-0.570949\pi\)
−0.221052 + 0.975262i \(0.570949\pi\)
\(770\) −46.6004 56.7510i −0.0605200 0.0737026i
\(771\) 0 0
\(772\) 88.9056i 0.115163i
\(773\) 544.045 0.703810 0.351905 0.936036i \(-0.385534\pi\)
0.351905 + 0.936036i \(0.385534\pi\)
\(774\) 0 0
\(775\) −239.590 + 1207.96i −0.309148 + 1.55866i
\(776\) 702.902i 0.905802i
\(777\) 0 0
\(778\) 630.186i 0.810008i
\(779\) 30.8217i 0.0395658i
\(780\) 0 0
\(781\) −251.934 −0.322578
\(782\) −640.395 −0.818920
\(783\) 0 0
\(784\) −772.636 −0.985505
\(785\) −251.469 + 206.491i −0.320343 + 0.263046i
\(786\) 0 0
\(787\) 69.1884i 0.0879141i −0.999033 0.0439571i \(-0.986004\pi\)
0.999033 0.0439571i \(-0.0139965\pi\)
\(788\) 99.3034 0.126020
\(789\) 0 0
\(790\) 818.028 + 996.212i 1.03548 + 1.26103i
\(791\) 453.044i 0.572749i
\(792\) 0 0
\(793\) 914.406i 1.15310i
\(794\) 85.0486i 0.107114i
\(795\) 0 0
\(796\) −5.41529 −0.00680313
\(797\) −312.876 −0.392567 −0.196284 0.980547i \(-0.562887\pi\)
−0.196284 + 0.980547i \(0.562887\pi\)
\(798\) 0 0
\(799\) −1038.99 −1.30036
\(800\) 29.0086 146.256i 0.0362608 0.182820i
\(801\) 0 0
\(802\) 602.218i 0.750895i
\(803\) 30.5254 0.0380142
\(804\) 0 0
\(805\) 144.184 118.395i 0.179111 0.147075i
\(806\) 1801.68i 2.23533i
\(807\) 0 0
\(808\) 1043.56i 1.29154i
\(809\) 686.872i 0.849038i 0.905419 + 0.424519i \(0.139557\pi\)
−0.905419 + 0.424519i \(0.860443\pi\)
\(810\) 0 0
\(811\) 900.127 1.10990 0.554949 0.831884i \(-0.312738\pi\)
0.554949 + 0.831884i \(0.312738\pi\)
\(812\) −30.4941 −0.0375543
\(813\) 0 0
\(814\) 86.4803 0.106241
\(815\) −450.913 + 370.262i −0.553268 + 0.454309i
\(816\) 0 0
\(817\) 325.557i 0.398478i
\(818\) 300.626 0.367514
\(819\) 0 0
\(820\) 2.66977 2.19225i 0.00325582 0.00267348i
\(821\) 1058.47i 1.28924i −0.764503 0.644620i \(-0.777015\pi\)
0.764503 0.644620i \(-0.222985\pi\)
\(822\) 0 0
\(823\) 257.006i 0.312280i −0.987735 0.156140i \(-0.950095\pi\)
0.987735 0.156140i \(-0.0499051\pi\)
\(824\) 456.760i 0.554320i
\(825\) 0 0
\(826\) 354.542 0.429228
\(827\) 1068.89 1.29249 0.646244 0.763131i \(-0.276339\pi\)
0.646244 + 0.763131i \(0.276339\pi\)
\(828\) 0 0
\(829\) −1079.37 −1.30202 −0.651009 0.759070i \(-0.725654\pi\)
−0.651009 + 0.759070i \(0.725654\pi\)
\(830\) −434.875 529.601i −0.523946 0.638073i
\(831\) 0 0
\(832\) 995.964i 1.19707i
\(833\) 773.500 0.928571
\(834\) 0 0
\(835\) −209.665 255.334i −0.251096 0.305790i
\(836\) 20.6903i 0.0247491i
\(837\) 0 0
\(838\) 883.757i 1.05460i
\(839\) 1026.52i 1.22350i 0.791052 + 0.611749i \(0.209534\pi\)
−0.791052 + 0.611749i \(0.790466\pi\)
\(840\) 0 0
\(841\) −642.325 −0.763763
\(842\) −461.546 −0.548155
\(843\) 0 0
\(844\) −25.8160 −0.0305877
\(845\) −434.198 528.776i −0.513844 0.625770i
\(846\) 0 0
\(847\) 23.2903i 0.0274974i
\(848\) −102.518 −0.120894
\(849\) 0 0
\(850\) −176.745 + 891.112i −0.207935 + 1.04837i
\(851\) 219.716i 0.258185i
\(852\) 0 0
\(853\) 1000.74i 1.17321i 0.809875 + 0.586603i \(0.199535\pi\)
−0.809875 + 0.586603i \(0.800465\pi\)
\(854\) 231.532i 0.271115i
\(855\) 0 0
\(856\) −718.850 −0.839778
\(857\) 730.751 0.852685 0.426342 0.904562i \(-0.359802\pi\)
0.426342 + 0.904562i \(0.359802\pi\)
\(858\) 0 0
\(859\) −1047.38 −1.21930 −0.609652 0.792669i \(-0.708691\pi\)
−0.609652 + 0.792669i \(0.708691\pi\)
\(860\) −28.1997 + 23.1558i −0.0327903 + 0.0269254i
\(861\) 0 0
\(862\) 641.162i 0.743808i
\(863\) −703.978 −0.815733 −0.407867 0.913042i \(-0.633727\pi\)
−0.407867 + 0.913042i \(0.633727\pi\)
\(864\) 0 0
\(865\) −10.4093 12.6767i −0.0120339 0.0146552i
\(866\) 650.629i 0.751303i
\(867\) 0 0
\(868\) 39.0023i 0.0449336i
\(869\) 408.840i 0.470472i
\(870\) 0 0
\(871\) 1307.12 1.50071
\(872\) −701.404 −0.804362
\(873\) 0 0
\(874\) 614.851 0.703490
\(875\) −124.953 233.309i −0.142804 0.266639i
\(876\) 0 0
\(877\) 592.692i 0.675817i 0.941179 + 0.337909i \(0.109719\pi\)
−0.941179 + 0.337909i \(0.890281\pi\)
\(878\) −1261.38 −1.43665
\(879\) 0 0
\(880\) 222.435 182.650i 0.252767 0.207556i
\(881\) 481.567i 0.546614i 0.961927 + 0.273307i \(0.0881175\pi\)
−0.961927 + 0.273307i \(0.911882\pi\)
\(882\) 0 0
\(883\) 416.531i 0.471722i −0.971787 0.235861i \(-0.924209\pi\)
0.971787 0.235861i \(-0.0757910\pi\)
\(884\) 113.631i 0.128542i
\(885\) 0 0
\(886\) 324.581 0.366344
\(887\) 1409.71 1.58930 0.794651 0.607066i \(-0.207654\pi\)
0.794651 + 0.607066i \(0.207654\pi\)
\(888\) 0 0
\(889\) 312.737 0.351785
\(890\) −761.708 + 625.468i −0.855852 + 0.702773i
\(891\) 0 0
\(892\) 109.654i 0.122930i
\(893\) 997.546 1.11707
\(894\) 0 0
\(895\) 711.215 584.006i 0.794654 0.652521i
\(896\) 302.695i 0.337829i
\(897\) 0 0
\(898\) 16.3537i 0.0182113i
\(899\) 1897.19i 2.11033i
\(900\) 0 0
\(901\) 102.633 0.113910
\(902\) 12.8155 0.0142079
\(903\) 0 0
\(904\) 1622.66 1.79498
\(905\) 79.0346 + 96.2501i 0.0873311 + 0.106354i
\(906\) 0 0
\(907\) 1639.35i 1.80744i −0.428127 0.903718i \(-0.640827\pi\)
0.428127 0.903718i \(-0.359173\pi\)
\(908\) 24.8172 0.0273317
\(909\) 0 0
\(910\) −245.720 299.243i −0.270022 0.328839i
\(911\) 1073.97i 1.17889i −0.807808 0.589446i \(-0.799346\pi\)
0.807808 0.589446i \(-0.200654\pi\)
\(912\) 0 0
\(913\) 217.345i 0.238056i
\(914\) 1709.67i 1.87054i
\(915\) 0 0
\(916\) 129.590 0.141474
\(917\) −0.0731044 −7.97213e−5
\(918\) 0 0
\(919\) 653.884 0.711517 0.355759 0.934578i \(-0.384223\pi\)
0.355759 + 0.934578i \(0.384223\pi\)
\(920\) 424.055 + 516.423i 0.460929 + 0.561329i
\(921\) 0 0
\(922\) 256.770i 0.278492i
\(923\) −1328.43 −1.43925
\(924\) 0 0
\(925\) 305.735 + 60.6400i 0.330524 + 0.0655568i
\(926\) 713.060i 0.770043i
\(927\) 0 0
\(928\) 229.705i 0.247526i
\(929\) 1604.50i 1.72713i 0.504239 + 0.863564i \(0.331773\pi\)
−0.504239 + 0.863564i \(0.668227\pi\)
\(930\) 0 0
\(931\) −742.645 −0.797686
\(932\) −121.215 −0.130059
\(933\) 0 0
\(934\) −1022.99 −1.09528
\(935\) −222.683 + 182.854i −0.238164 + 0.195566i
\(936\) 0 0
\(937\) 977.381i 1.04310i −0.853222 0.521548i \(-0.825355\pi\)
0.853222 0.521548i \(-0.174645\pi\)
\(938\) 330.970 0.352846
\(939\) 0 0
\(940\) −70.9523 86.4073i −0.0754812 0.0919227i
\(941\) 929.571i 0.987854i 0.869503 + 0.493927i \(0.164439\pi\)
−0.869503 + 0.493927i \(0.835561\pi\)
\(942\) 0 0
\(943\) 32.5596i 0.0345277i
\(944\) 1389.62i 1.47206i
\(945\) 0 0
\(946\) −135.364 −0.143091
\(947\) −1064.91 −1.12451 −0.562256 0.826963i \(-0.690066\pi\)
−0.562256 + 0.826963i \(0.690066\pi\)
\(948\) 0 0
\(949\) 160.958 0.169608
\(950\) 169.695 855.566i 0.178626 0.900596i
\(951\) 0 0
\(952\) 278.989i 0.293056i
\(953\) −1091.80 −1.14564 −0.572820 0.819681i \(-0.694151\pi\)
−0.572820 + 0.819681i \(0.694151\pi\)
\(954\) 0 0
\(955\) −1035.23 + 850.069i −1.08401 + 0.890125i
\(956\) 30.8770i 0.0322981i
\(957\) 0 0
\(958\) 840.993i 0.877863i
\(959\) 471.982i 0.492161i
\(960\) 0 0
\(961\) 1465.53 1.52500
\(962\) 456.004 0.474016
\(963\) 0 0
\(964\) 126.971 0.131712
\(965\) −918.695 + 754.376i −0.952016 + 0.781737i
\(966\) 0 0
\(967\) 1645.98i 1.70215i 0.525043 + 0.851076i \(0.324049\pi\)
−0.525043 + 0.851076i \(0.675951\pi\)
\(968\) 83.4187 0.0861763
\(969\) 0 0
\(970\) 749.064 615.085i 0.772231 0.634108i
\(971\) 500.415i 0.515361i −0.966230 0.257680i \(-0.917042\pi\)
0.966230 0.257680i \(-0.0829582\pi\)
\(972\) 0 0
\(973\) 331.897i 0.341106i
\(974\) 482.761i 0.495648i
\(975\) 0 0
\(976\) −907.487 −0.929803
\(977\) −1089.28 −1.11493 −0.557463 0.830202i \(-0.688225\pi\)
−0.557463 + 0.830202i \(0.688225\pi\)
\(978\) 0 0
\(979\) −312.601 −0.319307
\(980\) 52.8220 + 64.3278i 0.0539000 + 0.0656406i
\(981\) 0 0
\(982\) 1712.97i 1.74436i
\(983\) −1805.31 −1.83654 −0.918268 0.395959i \(-0.870412\pi\)
−0.918268 + 0.395959i \(0.870412\pi\)
\(984\) 0 0
\(985\) 842.603 + 1026.14i 0.855435 + 1.04177i
\(986\) 1399.55i 1.41942i
\(987\) 0 0
\(988\) 109.098i 0.110423i
\(989\) 343.913i 0.347738i
\(990\) 0 0
\(991\) −277.330 −0.279848 −0.139924 0.990162i \(-0.544686\pi\)
−0.139924 + 0.990162i \(0.544686\pi\)
\(992\) −293.795 −0.296164
\(993\) 0 0
\(994\) −336.364 −0.338394
\(995\) −45.9495 55.9583i −0.0461804 0.0562395i
\(996\) 0 0
\(997\) 1333.87i 1.33788i 0.743316 + 0.668940i \(0.233252\pi\)
−0.743316 + 0.668940i \(0.766748\pi\)
\(998\) −1377.51 −1.38027
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 495.3.g.a.89.30 yes 40
3.2 odd 2 inner 495.3.g.a.89.12 yes 40
5.4 even 2 inner 495.3.g.a.89.11 40
15.14 odd 2 inner 495.3.g.a.89.29 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
495.3.g.a.89.11 40 5.4 even 2 inner
495.3.g.a.89.12 yes 40 3.2 odd 2 inner
495.3.g.a.89.29 yes 40 15.14 odd 2 inner
495.3.g.a.89.30 yes 40 1.1 even 1 trivial