Properties

Label 2-48-1.1-c23-0-0
Degree $2$
Conductor $48$
Sign $1$
Analytic cond. $160.897$
Root an. cond. $12.6845$
Motivic weight $23$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.77e5·3-s − 1.74e8·5-s + 5.28e9·7-s + 3.13e10·9-s − 8.60e11·11-s − 1.20e13·13-s + 3.09e13·15-s − 1.65e14·17-s − 8.38e13·19-s − 9.36e14·21-s + 6.45e15·23-s + 1.86e16·25-s − 5.55e15·27-s + 6.43e14·29-s − 1.74e17·31-s + 1.52e17·33-s − 9.23e17·35-s − 1.06e18·37-s + 2.14e18·39-s − 4.76e18·41-s − 9.51e18·43-s − 5.48e18·45-s − 2.19e19·47-s + 5.51e17·49-s + 2.94e19·51-s + 2.92e19·53-s + 1.50e20·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.60·5-s + 1.01·7-s + 0.333·9-s − 0.909·11-s − 1.87·13-s + 0.924·15-s − 1.17·17-s − 0.165·19-s − 0.583·21-s + 1.41·23-s + 1.56·25-s − 0.192·27-s + 0.00978·29-s − 1.23·31-s + 0.524·33-s − 1.61·35-s − 0.982·37-s + 1.08·39-s − 1.35·41-s − 1.56·43-s − 0.533·45-s − 1.29·47-s + 0.0201·49-s + 0.678·51-s + 0.433·53-s + 1.45·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 48 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(24-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 48 ^{s/2} \, \Gamma_{\C}(s+23/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(48\)    =    \(2^{4} \cdot 3\)
Sign: $1$
Analytic conductor: \(160.897\)
Root analytic conductor: \(12.6845\)
Motivic weight: \(23\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 48,\ (\ :23/2),\ 1)\)

Particular Values

\(L(12)\) \(\approx\) \(0.0002787830359\)
\(L(\frac12)\) \(\approx\) \(0.0002787830359\)
\(L(\frac{25}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 1.77e5T \)
good5 \( 1 + 1.74e8T + 1.19e16T^{2} \)
7 \( 1 - 5.28e9T + 2.73e19T^{2} \)
11 \( 1 + 8.60e11T + 8.95e23T^{2} \)
13 \( 1 + 1.20e13T + 4.17e25T^{2} \)
17 \( 1 + 1.65e14T + 1.99e28T^{2} \)
19 \( 1 + 8.38e13T + 2.57e29T^{2} \)
23 \( 1 - 6.45e15T + 2.08e31T^{2} \)
29 \( 1 - 6.43e14T + 4.31e33T^{2} \)
31 \( 1 + 1.74e17T + 2.00e34T^{2} \)
37 \( 1 + 1.06e18T + 1.17e36T^{2} \)
41 \( 1 + 4.76e18T + 1.24e37T^{2} \)
43 \( 1 + 9.51e18T + 3.71e37T^{2} \)
47 \( 1 + 2.19e19T + 2.87e38T^{2} \)
53 \( 1 - 2.92e19T + 4.55e39T^{2} \)
59 \( 1 + 1.50e20T + 5.36e40T^{2} \)
61 \( 1 + 4.02e20T + 1.15e41T^{2} \)
67 \( 1 + 1.53e21T + 9.99e41T^{2} \)
71 \( 1 + 1.02e21T + 3.79e42T^{2} \)
73 \( 1 + 2.92e21T + 7.18e42T^{2} \)
79 \( 1 + 3.71e21T + 4.42e43T^{2} \)
83 \( 1 - 5.42e21T + 1.37e44T^{2} \)
89 \( 1 - 2.35e22T + 6.85e44T^{2} \)
97 \( 1 - 1.53e22T + 4.96e45T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.33312434886007924614738495020, −10.43610702211657812194327095332, −8.733264423267893957024090633883, −7.63991985786957450593787940299, −7.01962292939969532042045908174, −4.93541929432582584708938811994, −4.73208863587060932340650556700, −3.16865230676044069580279358435, −1.77959107699616135867409517161, −0.00726232416674873961237161583, 0.00726232416674873961237161583, 1.77959107699616135867409517161, 3.16865230676044069580279358435, 4.73208863587060932340650556700, 4.93541929432582584708938811994, 7.01962292939969532042045908174, 7.63991985786957450593787940299, 8.733264423267893957024090633883, 10.43610702211657812194327095332, 11.33312434886007924614738495020

Graph of the $Z$-function along the critical line