Properties

Label 2-475-19.11-c1-0-12
Degree $2$
Conductor $475$
Sign $0.910 - 0.412i$
Analytic cond. $3.79289$
Root an. cond. $1.94753$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.25 + 2.17i)2-s + (0.610 − 1.05i)3-s + (−2.14 − 3.71i)4-s + (1.53 + 2.65i)6-s + 0.221·7-s + 5.72·8-s + (0.753 + 1.30i)9-s − 0.778·11-s − 5.23·12-s + (−2.5 − 4.33i)13-s + (−0.278 + 0.481i)14-s + (−2.89 + 5.01i)16-s + (3.53 − 6.12i)17-s − 3.77·18-s + (1.33 − 4.15i)19-s + ⋯
L(s)  = 1  + (−0.886 + 1.53i)2-s + (0.352 − 0.610i)3-s + (−1.07 − 1.85i)4-s + (0.625 + 1.08i)6-s + 0.0838·7-s + 2.02·8-s + (0.251 + 0.435i)9-s − 0.234·11-s − 1.51·12-s + (−0.693 − 1.20i)13-s + (−0.0743 + 0.128i)14-s + (−0.724 + 1.25i)16-s + (0.858 − 1.48i)17-s − 0.890·18-s + (0.305 − 0.952i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.910 - 0.412i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.910 - 0.412i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(475\)    =    \(5^{2} \cdot 19\)
Sign: $0.910 - 0.412i$
Analytic conductor: \(3.79289\)
Root analytic conductor: \(1.94753\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{475} (201, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 475,\ (\ :1/2),\ 0.910 - 0.412i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.904484 + 0.195483i\)
\(L(\frac12)\) \(\approx\) \(0.904484 + 0.195483i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
19 \( 1 + (-1.33 + 4.15i)T \)
good2 \( 1 + (1.25 - 2.17i)T + (-1 - 1.73i)T^{2} \)
3 \( 1 + (-0.610 + 1.05i)T + (-1.5 - 2.59i)T^{2} \)
7 \( 1 - 0.221T + 7T^{2} \)
11 \( 1 + 0.778T + 11T^{2} \)
13 \( 1 + (2.5 + 4.33i)T + (-6.5 + 11.2i)T^{2} \)
17 \( 1 + (-3.53 + 6.12i)T + (-8.5 - 14.7i)T^{2} \)
23 \( 1 + (-4.03 - 6.99i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (0.110 + 0.192i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 - 2.50T + 31T^{2} \)
37 \( 1 - 1.90T + 37T^{2} \)
41 \( 1 + (-3.61 + 6.26i)T + (-20.5 - 35.5i)T^{2} \)
43 \( 1 + (-3.64 + 6.32i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + (1.39 + 2.41i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + (-2.19 - 3.79i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + (-1.39 + 2.41i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (-6.29 - 10.8i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (5.28 + 9.15i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + (-4.92 + 8.52i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 + (7.03 - 12.1i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (0.792 - 1.37i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 - 9.52T + 83T^{2} \)
89 \( 1 + (1.57 + 2.71i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (3.18 - 5.51i)T + (-48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.69031879008068018147244449966, −9.778287908915256567996642701861, −9.085824456466484498327632318087, −7.984010942388622338837020732399, −7.45256236702996570759877284254, −6.98806444053600022878436202671, −5.49100037982058781935466097656, −5.02710603811206847707130621460, −2.80181047719129562755059651019, −0.851493773775849930987144135948, 1.37590370879508833567984685784, 2.72906864628016150800411087153, 3.79261435691656696779702123729, 4.59389301000982668979591950169, 6.41999319106522427040436988799, 7.86060123988430621937283087617, 8.606375649925596022542469409066, 9.506449086445786822578826774308, 10.00698133303412958156068315149, 10.72570370520519314144769957306

Graph of the $Z$-function along the critical line