L(s) = 1 | + (−1.25 + 2.17i)2-s + (0.610 − 1.05i)3-s + (−2.14 − 3.71i)4-s + (1.53 + 2.65i)6-s + 0.221·7-s + 5.72·8-s + (0.753 + 1.30i)9-s − 0.778·11-s − 5.23·12-s + (−2.5 − 4.33i)13-s + (−0.278 + 0.481i)14-s + (−2.89 + 5.01i)16-s + (3.53 − 6.12i)17-s − 3.77·18-s + (1.33 − 4.15i)19-s + ⋯ |
L(s) = 1 | + (−0.886 + 1.53i)2-s + (0.352 − 0.610i)3-s + (−1.07 − 1.85i)4-s + (0.625 + 1.08i)6-s + 0.0838·7-s + 2.02·8-s + (0.251 + 0.435i)9-s − 0.234·11-s − 1.51·12-s + (−0.693 − 1.20i)13-s + (−0.0743 + 0.128i)14-s + (−0.724 + 1.25i)16-s + (0.858 − 1.48i)17-s − 0.890·18-s + (0.305 − 0.952i)19-s + ⋯ |
Λ(s)=(=(475s/2ΓC(s)L(s)(0.910−0.412i)Λ(2−s)
Λ(s)=(=(475s/2ΓC(s+1/2)L(s)(0.910−0.412i)Λ(1−s)
Degree: |
2 |
Conductor: |
475
= 52⋅19
|
Sign: |
0.910−0.412i
|
Analytic conductor: |
3.79289 |
Root analytic conductor: |
1.94753 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ475(201,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 475, ( :1/2), 0.910−0.412i)
|
Particular Values
L(1) |
≈ |
0.904484+0.195483i |
L(21) |
≈ |
0.904484+0.195483i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 19 | 1+(−1.33+4.15i)T |
good | 2 | 1+(1.25−2.17i)T+(−1−1.73i)T2 |
| 3 | 1+(−0.610+1.05i)T+(−1.5−2.59i)T2 |
| 7 | 1−0.221T+7T2 |
| 11 | 1+0.778T+11T2 |
| 13 | 1+(2.5+4.33i)T+(−6.5+11.2i)T2 |
| 17 | 1+(−3.53+6.12i)T+(−8.5−14.7i)T2 |
| 23 | 1+(−4.03−6.99i)T+(−11.5+19.9i)T2 |
| 29 | 1+(0.110+0.192i)T+(−14.5+25.1i)T2 |
| 31 | 1−2.50T+31T2 |
| 37 | 1−1.90T+37T2 |
| 41 | 1+(−3.61+6.26i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−3.64+6.32i)T+(−21.5−37.2i)T2 |
| 47 | 1+(1.39+2.41i)T+(−23.5+40.7i)T2 |
| 53 | 1+(−2.19−3.79i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−1.39+2.41i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−6.29−10.8i)T+(−30.5+52.8i)T2 |
| 67 | 1+(5.28+9.15i)T+(−33.5+58.0i)T2 |
| 71 | 1+(−4.92+8.52i)T+(−35.5−61.4i)T2 |
| 73 | 1+(7.03−12.1i)T+(−36.5−63.2i)T2 |
| 79 | 1+(0.792−1.37i)T+(−39.5−68.4i)T2 |
| 83 | 1−9.52T+83T2 |
| 89 | 1+(1.57+2.71i)T+(−44.5+77.0i)T2 |
| 97 | 1+(3.18−5.51i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.69031879008068018147244449966, −9.778287908915256567996642701861, −9.085824456466484498327632318087, −7.984010942388622338837020732399, −7.45256236702996570759877284254, −6.98806444053600022878436202671, −5.49100037982058781935466097656, −5.02710603811206847707130621460, −2.80181047719129562755059651019, −0.851493773775849930987144135948,
1.37590370879508833567984685784, 2.72906864628016150800411087153, 3.79261435691656696779702123729, 4.59389301000982668979591950169, 6.41999319106522427040436988799, 7.86060123988430621937283087617, 8.606375649925596022542469409066, 9.506449086445786822578826774308, 10.00698133303412958156068315149, 10.72570370520519314144769957306