L(s) = 1 | + (−1.25 + 2.17i)2-s + (0.610 − 1.05i)3-s + (−2.14 − 3.71i)4-s + (1.53 + 2.65i)6-s + 0.221·7-s + 5.72·8-s + (0.753 + 1.30i)9-s − 0.778·11-s − 5.23·12-s + (−2.5 − 4.33i)13-s + (−0.278 + 0.481i)14-s + (−2.89 + 5.01i)16-s + (3.53 − 6.12i)17-s − 3.77·18-s + (1.33 − 4.15i)19-s + ⋯ |
L(s) = 1 | + (−0.886 + 1.53i)2-s + (0.352 − 0.610i)3-s + (−1.07 − 1.85i)4-s + (0.625 + 1.08i)6-s + 0.0838·7-s + 2.02·8-s + (0.251 + 0.435i)9-s − 0.234·11-s − 1.51·12-s + (−0.693 − 1.20i)13-s + (−0.0743 + 0.128i)14-s + (−0.724 + 1.25i)16-s + (0.858 − 1.48i)17-s − 0.890·18-s + (0.305 − 0.952i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.910 - 0.412i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.910 - 0.412i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.904484 + 0.195483i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.904484 + 0.195483i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 19 | \( 1 + (-1.33 + 4.15i)T \) |
good | 2 | \( 1 + (1.25 - 2.17i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (-0.610 + 1.05i)T + (-1.5 - 2.59i)T^{2} \) |
| 7 | \( 1 - 0.221T + 7T^{2} \) |
| 11 | \( 1 + 0.778T + 11T^{2} \) |
| 13 | \( 1 + (2.5 + 4.33i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-3.53 + 6.12i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (-4.03 - 6.99i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (0.110 + 0.192i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 2.50T + 31T^{2} \) |
| 37 | \( 1 - 1.90T + 37T^{2} \) |
| 41 | \( 1 + (-3.61 + 6.26i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-3.64 + 6.32i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (1.39 + 2.41i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-2.19 - 3.79i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-1.39 + 2.41i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-6.29 - 10.8i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (5.28 + 9.15i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-4.92 + 8.52i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (7.03 - 12.1i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (0.792 - 1.37i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 9.52T + 83T^{2} \) |
| 89 | \( 1 + (1.57 + 2.71i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (3.18 - 5.51i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.69031879008068018147244449966, −9.778287908915256567996642701861, −9.085824456466484498327632318087, −7.984010942388622338837020732399, −7.45256236702996570759877284254, −6.98806444053600022878436202671, −5.49100037982058781935466097656, −5.02710603811206847707130621460, −2.80181047719129562755059651019, −0.851493773775849930987144135948,
1.37590370879508833567984685784, 2.72906864628016150800411087153, 3.79261435691656696779702123729, 4.59389301000982668979591950169, 6.41999319106522427040436988799, 7.86060123988430621937283087617, 8.606375649925596022542469409066, 9.506449086445786822578826774308, 10.00698133303412958156068315149, 10.72570370520519314144769957306