L(s) = 1 | + (−1.25 − 2.17i)2-s + (0.610 + 1.05i)3-s + (−2.14 + 3.71i)4-s + (1.53 − 2.65i)6-s + 0.221·7-s + 5.72·8-s + (0.753 − 1.30i)9-s − 0.778·11-s − 5.23·12-s + (−2.5 + 4.33i)13-s + (−0.278 − 0.481i)14-s + (−2.89 − 5.01i)16-s + (3.53 + 6.12i)17-s − 3.77·18-s + (1.33 + 4.15i)19-s + ⋯ |
L(s) = 1 | + (−0.886 − 1.53i)2-s + (0.352 + 0.610i)3-s + (−1.07 + 1.85i)4-s + (0.625 − 1.08i)6-s + 0.0838·7-s + 2.02·8-s + (0.251 − 0.435i)9-s − 0.234·11-s − 1.51·12-s + (−0.693 + 1.20i)13-s + (−0.0743 − 0.128i)14-s + (−0.724 − 1.25i)16-s + (0.858 + 1.48i)17-s − 0.890·18-s + (0.305 + 0.952i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.910 + 0.412i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.910 + 0.412i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.904484 - 0.195483i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.904484 - 0.195483i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 19 | \( 1 + (-1.33 - 4.15i)T \) |
good | 2 | \( 1 + (1.25 + 2.17i)T + (-1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (-0.610 - 1.05i)T + (-1.5 + 2.59i)T^{2} \) |
| 7 | \( 1 - 0.221T + 7T^{2} \) |
| 11 | \( 1 + 0.778T + 11T^{2} \) |
| 13 | \( 1 + (2.5 - 4.33i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-3.53 - 6.12i)T + (-8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (-4.03 + 6.99i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (0.110 - 0.192i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 2.50T + 31T^{2} \) |
| 37 | \( 1 - 1.90T + 37T^{2} \) |
| 41 | \( 1 + (-3.61 - 6.26i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-3.64 - 6.32i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (1.39 - 2.41i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-2.19 + 3.79i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-1.39 - 2.41i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-6.29 + 10.8i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (5.28 - 9.15i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-4.92 - 8.52i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (7.03 + 12.1i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (0.792 + 1.37i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 9.52T + 83T^{2} \) |
| 89 | \( 1 + (1.57 - 2.71i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (3.18 + 5.51i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.72570370520519314144769957306, −10.00698133303412958156068315149, −9.506449086445786822578826774308, −8.606375649925596022542469409066, −7.86060123988430621937283087617, −6.41999319106522427040436988799, −4.59389301000982668979591950169, −3.79261435691656696779702123729, −2.72906864628016150800411087153, −1.37590370879508833567984685784,
0.851493773775849930987144135948, 2.80181047719129562755059651019, 5.02710603811206847707130621460, 5.49100037982058781935466097656, 6.98806444053600022878436202671, 7.45256236702996570759877284254, 7.984010942388622338837020732399, 9.085824456466484498327632318087, 9.778287908915256567996642701861, 10.69031879008068018147244449966