| L(s) = 1 | + 2-s − 2·4-s + 2·7-s − 3·8-s + 4·11-s − 5·13-s + 2·14-s + 16-s − 17-s − 3·19-s + 4·22-s − 13·23-s − 5·26-s − 4·28-s + 29-s + 2·32-s − 34-s − 3·38-s + 5·41-s + 2·43-s − 8·44-s − 13·46-s − 22·47-s + 3·49-s + 10·52-s + 11·53-s − 6·56-s + ⋯ |
| L(s) = 1 | + 0.707·2-s − 4-s + 0.755·7-s − 1.06·8-s + 1.20·11-s − 1.38·13-s + 0.534·14-s + 1/4·16-s − 0.242·17-s − 0.688·19-s + 0.852·22-s − 2.71·23-s − 0.980·26-s − 0.755·28-s + 0.185·29-s + 0.353·32-s − 0.171·34-s − 0.486·38-s + 0.780·41-s + 0.304·43-s − 1.20·44-s − 1.91·46-s − 3.20·47-s + 3/7·49-s + 1.38·52-s + 1.51·53-s − 0.801·56-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 22325625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 22325625 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.112065326360368691139937715618, −7.86076385646026684808938831686, −7.42371253359584551199346309876, −6.98511578389513866648498642243, −6.61523821622143271777947886324, −6.17061956067114644986514432445, −5.85139157010994271072192767213, −5.53997603013213380483032796126, −4.98563643187102024486243805788, −4.69917038922586162819833893291, −4.27943106467769007981420215438, −4.25791517684523557601567061181, −3.67233238001055450591680162641, −3.39647652184184603421936063801, −2.54959027754455251668857274972, −2.28212718239631039229095044207, −1.68811323508073191986973099598, −1.20776691220666590698986010322, 0, 0,
1.20776691220666590698986010322, 1.68811323508073191986973099598, 2.28212718239631039229095044207, 2.54959027754455251668857274972, 3.39647652184184603421936063801, 3.67233238001055450591680162641, 4.25791517684523557601567061181, 4.27943106467769007981420215438, 4.69917038922586162819833893291, 4.98563643187102024486243805788, 5.53997603013213380483032796126, 5.85139157010994271072192767213, 6.17061956067114644986514432445, 6.61523821622143271777947886324, 6.98511578389513866648498642243, 7.42371253359584551199346309876, 7.86076385646026684808938831686, 8.112065326360368691139937715618