Properties

Label 16-459e8-1.1-c1e8-0-2
Degree $16$
Conductor $1.970\times 10^{21}$
Sign $1$
Analytic cond. $32562.5$
Root an. cond. $1.91445$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3·4-s + 5-s + 3·7-s − 2·8-s − 10-s + 3·11-s + 9·13-s − 3·14-s + 6·16-s + 8·17-s − 14·19-s + 3·20-s − 3·22-s + 10·23-s + 15·25-s − 9·26-s + 9·28-s − 15·29-s + 15·31-s − 3·32-s − 8·34-s + 3·35-s − 24·37-s + 14·38-s − 2·40-s − 6·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 3/2·4-s + 0.447·5-s + 1.13·7-s − 0.707·8-s − 0.316·10-s + 0.904·11-s + 2.49·13-s − 0.801·14-s + 3/2·16-s + 1.94·17-s − 3.21·19-s + 0.670·20-s − 0.639·22-s + 2.08·23-s + 3·25-s − 1.76·26-s + 1.70·28-s − 2.78·29-s + 2.69·31-s − 0.530·32-s − 1.37·34-s + 0.507·35-s − 3.94·37-s + 2.27·38-s − 0.316·40-s − 0.937·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{24} \cdot 17^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{24} \cdot 17^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(3^{24} \cdot 17^{8}\)
Sign: $1$
Analytic conductor: \(32562.5\)
Root analytic conductor: \(1.91445\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 3^{24} \cdot 17^{8} ,\ ( \ : [1/2]^{8} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(11.58446408\)
\(L(\frac12)\) \(\approx\) \(11.58446408\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
17 \( ( 1 - T )^{8} \)
good2 \( ( 1 - T + T^{4} - p^{3} T^{7} + p^{4} T^{8} )( 1 + p T - 3 T^{3} - 5 T^{4} - 3 p T^{5} + p^{4} T^{7} + p^{4} T^{8} ) \)
5 \( 1 - T - 14 T^{2} + 9 T^{3} + 22 p T^{4} - 34 T^{5} - 711 T^{6} + 64 T^{7} + 3889 T^{8} + 64 p T^{9} - 711 p^{2} T^{10} - 34 p^{3} T^{11} + 22 p^{5} T^{12} + 9 p^{5} T^{13} - 14 p^{6} T^{14} - p^{7} T^{15} + p^{8} T^{16} \)
7 \( 1 - 3 T - 2 p T^{2} + 39 T^{3} + 136 T^{4} - 234 T^{5} - 1277 T^{6} + 72 p T^{7} + 1543 p T^{8} + 72 p^{2} T^{9} - 1277 p^{2} T^{10} - 234 p^{3} T^{11} + 136 p^{4} T^{12} + 39 p^{5} T^{13} - 2 p^{7} T^{14} - 3 p^{7} T^{15} + p^{8} T^{16} \)
11 \( 1 - 3 T - 26 T^{2} + 39 T^{3} + 490 T^{4} - 18 p T^{5} - 6887 T^{6} + 1374 T^{7} + 73429 T^{8} + 1374 p T^{9} - 6887 p^{2} T^{10} - 18 p^{4} T^{11} + 490 p^{4} T^{12} + 39 p^{5} T^{13} - 26 p^{6} T^{14} - 3 p^{7} T^{15} + p^{8} T^{16} \)
13 \( 1 - 9 T + p T^{2} + 42 T^{3} + 274 T^{4} - 1161 T^{5} - 4022 T^{6} - 5154 T^{7} + 135469 T^{8} - 5154 p T^{9} - 4022 p^{2} T^{10} - 1161 p^{3} T^{11} + 274 p^{4} T^{12} + 42 p^{5} T^{13} + p^{7} T^{14} - 9 p^{7} T^{15} + p^{8} T^{16} \)
19 \( ( 1 + 7 T + 34 T^{2} + 181 T^{3} + 1021 T^{4} + 181 p T^{5} + 34 p^{2} T^{6} + 7 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
23 \( 1 - 10 T + T^{2} + 186 T^{3} + 584 T^{4} - 4996 T^{5} - 15117 T^{6} + 70216 T^{7} + 152287 T^{8} + 70216 p T^{9} - 15117 p^{2} T^{10} - 4996 p^{3} T^{11} + 584 p^{4} T^{12} + 186 p^{5} T^{13} + p^{6} T^{14} - 10 p^{7} T^{15} + p^{8} T^{16} \)
29 \( 1 + 15 T + 43 T^{2} - 60 T^{3} + 3298 T^{4} + 27315 T^{5} + 25342 T^{6} + 353040 T^{7} + 5203561 T^{8} + 353040 p T^{9} + 25342 p^{2} T^{10} + 27315 p^{3} T^{11} + 3298 p^{4} T^{12} - 60 p^{5} T^{13} + 43 p^{6} T^{14} + 15 p^{7} T^{15} + p^{8} T^{16} \)
31 \( 1 - 15 T + 25 T^{2} + 90 T^{3} + 6250 T^{4} - 39645 T^{5} - 2000 p T^{6} - 510240 T^{7} + 11875279 T^{8} - 510240 p T^{9} - 2000 p^{3} T^{10} - 39645 p^{3} T^{11} + 6250 p^{4} T^{12} + 90 p^{5} T^{13} + 25 p^{6} T^{14} - 15 p^{7} T^{15} + p^{8} T^{16} \)
37 \( ( 1 + 12 T + 113 T^{2} + 756 T^{3} + 4401 T^{4} + 756 p T^{5} + 113 p^{2} T^{6} + 12 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
41 \( 1 + 6 T - 83 T^{2} - 726 T^{3} + 3292 T^{4} + 36612 T^{5} - 37973 T^{6} - 696720 T^{7} - 33089 T^{8} - 696720 p T^{9} - 37973 p^{2} T^{10} + 36612 p^{3} T^{11} + 3292 p^{4} T^{12} - 726 p^{5} T^{13} - 83 p^{6} T^{14} + 6 p^{7} T^{15} + p^{8} T^{16} \)
43 \( 1 - 18 T + 148 T^{2} - 396 T^{3} - 3794 T^{4} + 50058 T^{5} - 229592 T^{6} + 76446 T^{7} + 4695967 T^{8} + 76446 p T^{9} - 229592 p^{2} T^{10} + 50058 p^{3} T^{11} - 3794 p^{4} T^{12} - 396 p^{5} T^{13} + 148 p^{6} T^{14} - 18 p^{7} T^{15} + p^{8} T^{16} \)
47 \( 1 - 12 T - 80 T^{2} + 642 T^{3} + 13729 T^{4} - 56007 T^{5} - 865811 T^{6} + 457017 T^{7} + 55050073 T^{8} + 457017 p T^{9} - 865811 p^{2} T^{10} - 56007 p^{3} T^{11} + 13729 p^{4} T^{12} + 642 p^{5} T^{13} - 80 p^{6} T^{14} - 12 p^{7} T^{15} + p^{8} T^{16} \)
53 \( ( 1 + 12 T + 227 T^{2} + 1854 T^{3} + 18363 T^{4} + 1854 p T^{5} + 227 p^{2} T^{6} + 12 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
59 \( 1 - 122 T^{2} + 576 T^{3} + 6937 T^{4} - 52128 T^{5} - 37226 T^{6} + 1857312 T^{7} - 5667452 T^{8} + 1857312 p T^{9} - 37226 p^{2} T^{10} - 52128 p^{3} T^{11} + 6937 p^{4} T^{12} + 576 p^{5} T^{13} - 122 p^{6} T^{14} + p^{8} T^{16} \)
61 \( 1 + 5 T - 60 T^{2} - 419 T^{3} - 3616 T^{4} - 25698 T^{5} - 60191 T^{6} + 2024672 T^{7} + 35986221 T^{8} + 2024672 p T^{9} - 60191 p^{2} T^{10} - 25698 p^{3} T^{11} - 3616 p^{4} T^{12} - 419 p^{5} T^{13} - 60 p^{6} T^{14} + 5 p^{7} T^{15} + p^{8} T^{16} \)
67 \( 1 - 6 T - 155 T^{2} + 1134 T^{3} + 12136 T^{4} - 84060 T^{5} - 787337 T^{6} + 2272488 T^{7} + 57092431 T^{8} + 2272488 p T^{9} - 787337 p^{2} T^{10} - 84060 p^{3} T^{11} + 12136 p^{4} T^{12} + 1134 p^{5} T^{13} - 155 p^{6} T^{14} - 6 p^{7} T^{15} + p^{8} T^{16} \)
71 \( ( 1 - 25 T + 447 T^{2} - 5406 T^{3} + 52285 T^{4} - 5406 p T^{5} + 447 p^{2} T^{6} - 25 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
73 \( ( 1 - 4 T + 197 T^{2} - 624 T^{3} + 18077 T^{4} - 624 p T^{5} + 197 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
79 \( 1 - 8 T - 130 T^{2} + 698 T^{3} + 11315 T^{4} - 29989 T^{5} - 384141 T^{6} + 1367031 T^{7} - 10694699 T^{8} + 1367031 p T^{9} - 384141 p^{2} T^{10} - 29989 p^{3} T^{11} + 11315 p^{4} T^{12} + 698 p^{5} T^{13} - 130 p^{6} T^{14} - 8 p^{7} T^{15} + p^{8} T^{16} \)
83 \( 1 + 7 T - 275 T^{2} - 942 T^{3} + 53966 T^{4} + 96385 T^{5} - 6779508 T^{6} - 2857684 T^{7} + 653637691 T^{8} - 2857684 p T^{9} - 6779508 p^{2} T^{10} + 96385 p^{3} T^{11} + 53966 p^{4} T^{12} - 942 p^{5} T^{13} - 275 p^{6} T^{14} + 7 p^{7} T^{15} + p^{8} T^{16} \)
89 \( ( 1 - 14 T + 222 T^{2} - 1497 T^{3} + 19543 T^{4} - 1497 p T^{5} + 222 p^{2} T^{6} - 14 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
97 \( 1 - 16 T - 54 T^{2} + 1216 T^{3} + 9869 T^{4} - 78480 T^{5} - 838382 T^{6} + 10731488 T^{7} - 94479444 T^{8} + 10731488 p T^{9} - 838382 p^{2} T^{10} - 78480 p^{3} T^{11} + 9869 p^{4} T^{12} + 1216 p^{5} T^{13} - 54 p^{6} T^{14} - 16 p^{7} T^{15} + p^{8} T^{16} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.93171647480171449157683942365, −4.90841085169579196012743064453, −4.79516413746234643723416101105, −4.47413148250163163136288544454, −4.25984999635466343890365571917, −4.01587055210668990051508292810, −3.94337318674106459856057783989, −3.90166903066062545372918324129, −3.50354575943590664500187029090, −3.47633934041869629922681002225, −3.43628509904122098467565825816, −3.37162292705752369026138711949, −3.19415967908606623446494848732, −2.92446823674689734247702427699, −2.48662375311980226648159929474, −2.34334423402296457673357168216, −2.24133685810284811443527369266, −2.16750311388098496041637439001, −2.15655325921897698987464211530, −1.76336391590306534050067657172, −1.24810661714817408080059299928, −1.23449264519445715526081079561, −1.16122918885508434248688389246, −1.02622750530232039876315096333, −0.64875590801532541949849456975, 0.64875590801532541949849456975, 1.02622750530232039876315096333, 1.16122918885508434248688389246, 1.23449264519445715526081079561, 1.24810661714817408080059299928, 1.76336391590306534050067657172, 2.15655325921897698987464211530, 2.16750311388098496041637439001, 2.24133685810284811443527369266, 2.34334423402296457673357168216, 2.48662375311980226648159929474, 2.92446823674689734247702427699, 3.19415967908606623446494848732, 3.37162292705752369026138711949, 3.43628509904122098467565825816, 3.47633934041869629922681002225, 3.50354575943590664500187029090, 3.90166903066062545372918324129, 3.94337318674106459856057783989, 4.01587055210668990051508292810, 4.25984999635466343890365571917, 4.47413148250163163136288544454, 4.79516413746234643723416101105, 4.90841085169579196012743064453, 4.93171647480171449157683942365

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.