Properties

Label 459.2.e.b.154.4
Level $459$
Weight $2$
Character 459.154
Analytic conductor $3.665$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [459,2,Mod(154,459)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("459.154"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(459, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 459 = 3^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 459.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.66513345278\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.152695449.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 3x^{5} - 5x^{4} + 6x^{3} - 16x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 153)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 154.4
Root \(-1.37475 + 0.331768i\) of defining polynomial
Character \(\chi\) \(=\) 459.154
Dual form 459.2.e.b.307.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.974693 - 1.68822i) q^{2} +(-0.900054 - 1.55894i) q^{4} +(-0.974693 - 1.68822i) q^{5} +(0.900054 - 1.55894i) q^{7} +0.389667 q^{8} -3.80011 q^{10} +(0.194834 - 0.337462i) q^{11} +(-0.679914 - 1.17765i) q^{13} +(-1.75455 - 3.03897i) q^{14} +(2.17991 - 3.77572i) q^{16} +1.00000 q^{17} -7.91955 q^{19} +(-1.75455 + 3.03897i) q^{20} +(-0.379806 - 0.657843i) q^{22} +(0.905113 + 1.56770i) q^{23} +(0.599946 - 1.03914i) q^{25} -2.65083 q^{26} -3.24039 q^{28} +(-2.26947 + 3.93084i) q^{29} +(2.40005 + 4.15702i) q^{31} +(-3.85983 - 6.68542i) q^{32} +(0.974693 - 1.68822i) q^{34} -3.50911 q^{35} +7.20799 q^{37} +(-7.71913 + 13.3699i) q^{38} +(-0.379806 - 0.657843i) q^{40} +(1.00533 + 1.74128i) q^{41} +(6.28844 - 10.8919i) q^{43} -0.701443 q^{44} +3.52883 q^{46} +(2.07464 - 3.59338i) q^{47} +(1.87981 + 3.25592i) q^{49} +(-1.16953 - 2.02568i) q^{50} +(-1.22392 + 2.11989i) q^{52} +2.08855 q^{53} -0.759612 q^{55} +(0.350721 - 0.607467i) q^{56} +(4.42408 + 7.66273i) q^{58} +(5.80921 + 10.0619i) q^{59} +(-4.74444 + 8.21760i) q^{61} +9.35727 q^{62} -6.32894 q^{64} +(-1.32541 + 2.29569i) q^{65} +(1.81555 + 3.14463i) q^{67} +(-0.900054 - 1.55894i) q^{68} +(-3.42030 + 5.92414i) q^{70} +14.5198 q^{71} +0.111884 q^{73} +(7.02558 - 12.1687i) q^{74} +(7.12802 + 12.3461i) q^{76} +(-0.350721 - 0.607467i) q^{77} +(-5.36841 + 9.29835i) q^{79} -8.49899 q^{80} +3.91955 q^{82} +(-2.10527 + 3.64644i) q^{83} +(-0.974693 - 1.68822i) q^{85} +(-12.2586 - 21.2325i) q^{86} +(0.0759202 - 0.131498i) q^{88} +2.18327 q^{89} -2.44784 q^{91} +(1.62930 - 2.82203i) q^{92} +(-4.04427 - 7.00489i) q^{94} +(7.71913 + 13.3699i) q^{95} +(2.42861 - 4.20648i) q^{97} +7.32894 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - q^{2} - 3 q^{4} + q^{5} + 3 q^{7} + 6 q^{8} - 22 q^{10} + 3 q^{11} + 9 q^{13} + 5 q^{14} + 3 q^{16} + 8 q^{17} - 14 q^{19} + 5 q^{20} + 3 q^{22} + 10 q^{23} + 9 q^{25} - 22 q^{26} - 38 q^{28} - 15 q^{29}+ \cdots + 30 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/459\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(190\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.974693 1.68822i 0.689212 1.19375i −0.282881 0.959155i \(-0.591290\pi\)
0.972093 0.234596i \(-0.0753766\pi\)
\(3\) 0 0
\(4\) −0.900054 1.55894i −0.450027 0.779470i
\(5\) −0.974693 1.68822i −0.435896 0.754994i 0.561472 0.827496i \(-0.310235\pi\)
−0.997368 + 0.0725014i \(0.976902\pi\)
\(6\) 0 0
\(7\) 0.900054 1.55894i 0.340188 0.589224i −0.644279 0.764790i \(-0.722842\pi\)
0.984468 + 0.175567i \(0.0561758\pi\)
\(8\) 0.389667 0.137768
\(9\) 0 0
\(10\) −3.80011 −1.20170
\(11\) 0.194834 0.337462i 0.0587445 0.101748i −0.835158 0.550011i \(-0.814624\pi\)
0.893902 + 0.448262i \(0.147957\pi\)
\(12\) 0 0
\(13\) −0.679914 1.17765i −0.188574 0.326620i 0.756201 0.654339i \(-0.227053\pi\)
−0.944775 + 0.327719i \(0.893720\pi\)
\(14\) −1.75455 3.03897i −0.468924 0.812200i
\(15\) 0 0
\(16\) 2.17991 3.77572i 0.544978 0.943930i
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) −7.91955 −1.81687 −0.908434 0.418028i \(-0.862722\pi\)
−0.908434 + 0.418028i \(0.862722\pi\)
\(20\) −1.75455 + 3.03897i −0.392330 + 0.679535i
\(21\) 0 0
\(22\) −0.379806 0.657843i −0.0809749 0.140253i
\(23\) 0.905113 + 1.56770i 0.188729 + 0.326888i 0.944827 0.327570i \(-0.106230\pi\)
−0.756098 + 0.654459i \(0.772897\pi\)
\(24\) 0 0
\(25\) 0.599946 1.03914i 0.119989 0.207827i
\(26\) −2.65083 −0.519870
\(27\) 0 0
\(28\) −3.24039 −0.612376
\(29\) −2.26947 + 3.93084i −0.421431 + 0.729939i −0.996080 0.0884608i \(-0.971805\pi\)
0.574649 + 0.818400i \(0.305139\pi\)
\(30\) 0 0
\(31\) 2.40005 + 4.15702i 0.431062 + 0.746622i 0.996965 0.0778501i \(-0.0248055\pi\)
−0.565903 + 0.824472i \(0.691472\pi\)
\(32\) −3.85983 6.68542i −0.682328 1.18183i
\(33\) 0 0
\(34\) 0.974693 1.68822i 0.167159 0.289527i
\(35\) −3.50911 −0.593147
\(36\) 0 0
\(37\) 7.20799 1.18499 0.592493 0.805576i \(-0.298144\pi\)
0.592493 + 0.805576i \(0.298144\pi\)
\(38\) −7.71913 + 13.3699i −1.25221 + 2.16889i
\(39\) 0 0
\(40\) −0.379806 0.657843i −0.0600526 0.104014i
\(41\) 1.00533 + 1.74128i 0.157006 + 0.271942i 0.933788 0.357828i \(-0.116482\pi\)
−0.776782 + 0.629770i \(0.783149\pi\)
\(42\) 0 0
\(43\) 6.28844 10.8919i 0.958978 1.66100i 0.233988 0.972239i \(-0.424822\pi\)
0.724990 0.688759i \(-0.241844\pi\)
\(44\) −0.701443 −0.105746
\(45\) 0 0
\(46\) 3.52883 0.520297
\(47\) 2.07464 3.59338i 0.302617 0.524148i −0.674111 0.738630i \(-0.735473\pi\)
0.976728 + 0.214482i \(0.0688063\pi\)
\(48\) 0 0
\(49\) 1.87981 + 3.25592i 0.268544 + 0.465131i
\(50\) −1.16953 2.02568i −0.165396 0.286474i
\(51\) 0 0
\(52\) −1.22392 + 2.11989i −0.169727 + 0.293976i
\(53\) 2.08855 0.286884 0.143442 0.989659i \(-0.454183\pi\)
0.143442 + 0.989659i \(0.454183\pi\)
\(54\) 0 0
\(55\) −0.759612 −0.102426
\(56\) 0.350721 0.607467i 0.0468671 0.0811762i
\(57\) 0 0
\(58\) 4.42408 + 7.66273i 0.580910 + 1.00617i
\(59\) 5.80921 + 10.0619i 0.756295 + 1.30994i 0.944728 + 0.327856i \(0.106326\pi\)
−0.188433 + 0.982086i \(0.560341\pi\)
\(60\) 0 0
\(61\) −4.74444 + 8.21760i −0.607463 + 1.05216i 0.384194 + 0.923252i \(0.374479\pi\)
−0.991657 + 0.128904i \(0.958854\pi\)
\(62\) 9.35727 1.18837
\(63\) 0 0
\(64\) −6.32894 −0.791117
\(65\) −1.32541 + 2.29569i −0.164397 + 0.284745i
\(66\) 0 0
\(67\) 1.81555 + 3.14463i 0.221805 + 0.384178i 0.955356 0.295457i \(-0.0954718\pi\)
−0.733551 + 0.679634i \(0.762138\pi\)
\(68\) −0.900054 1.55894i −0.109148 0.189049i
\(69\) 0 0
\(70\) −3.42030 + 5.92414i −0.408804 + 0.708070i
\(71\) 14.5198 1.72318 0.861589 0.507606i \(-0.169469\pi\)
0.861589 + 0.507606i \(0.169469\pi\)
\(72\) 0 0
\(73\) 0.111884 0.0130950 0.00654749 0.999979i \(-0.497916\pi\)
0.00654749 + 0.999979i \(0.497916\pi\)
\(74\) 7.02558 12.1687i 0.816707 1.41458i
\(75\) 0 0
\(76\) 7.12802 + 12.3461i 0.817640 + 1.41619i
\(77\) −0.350721 0.607467i −0.0399684 0.0692273i
\(78\) 0 0
\(79\) −5.36841 + 9.29835i −0.603993 + 1.04615i 0.388217 + 0.921568i \(0.373091\pi\)
−0.992210 + 0.124579i \(0.960242\pi\)
\(80\) −8.49899 −0.950216
\(81\) 0 0
\(82\) 3.91955 0.432842
\(83\) −2.10527 + 3.64644i −0.231084 + 0.400249i −0.958127 0.286342i \(-0.907561\pi\)
0.727043 + 0.686591i \(0.240894\pi\)
\(84\) 0 0
\(85\) −0.974693 1.68822i −0.105720 0.183113i
\(86\) −12.2586 21.2325i −1.32188 2.28956i
\(87\) 0 0
\(88\) 0.0759202 0.131498i 0.00809312 0.0140177i
\(89\) 2.18327 0.231426 0.115713 0.993283i \(-0.463085\pi\)
0.115713 + 0.993283i \(0.463085\pi\)
\(90\) 0 0
\(91\) −2.44784 −0.256603
\(92\) 1.62930 2.82203i 0.169866 0.294217i
\(93\) 0 0
\(94\) −4.04427 7.00489i −0.417135 0.722499i
\(95\) 7.71913 + 13.3699i 0.791966 + 1.37173i
\(96\) 0 0
\(97\) 2.42861 4.20648i 0.246588 0.427103i −0.715989 0.698112i \(-0.754024\pi\)
0.962577 + 0.271008i \(0.0873571\pi\)
\(98\) 7.32894 0.740334
\(99\) 0 0
\(100\) −2.15994 −0.215994
\(101\) 6.67486 11.5612i 0.664173 1.15038i −0.315336 0.948980i \(-0.602117\pi\)
0.979509 0.201401i \(-0.0645495\pi\)
\(102\) 0 0
\(103\) −3.54832 6.14587i −0.349626 0.605571i 0.636557 0.771230i \(-0.280358\pi\)
−0.986183 + 0.165659i \(0.947025\pi\)
\(104\) −0.264940 0.458889i −0.0259795 0.0449978i
\(105\) 0 0
\(106\) 2.03569 3.52592i 0.197724 0.342468i
\(107\) −15.9058 −1.53767 −0.768837 0.639445i \(-0.779164\pi\)
−0.768837 + 0.639445i \(0.779164\pi\)
\(108\) 0 0
\(109\) −7.21705 −0.691268 −0.345634 0.938369i \(-0.612336\pi\)
−0.345634 + 0.938369i \(0.612336\pi\)
\(110\) −0.740388 + 1.28239i −0.0705933 + 0.122271i
\(111\) 0 0
\(112\) −3.92408 6.79671i −0.370791 0.642228i
\(113\) 9.30948 + 16.1245i 0.875763 + 1.51687i 0.855948 + 0.517062i \(0.172974\pi\)
0.0198143 + 0.999804i \(0.493692\pi\)
\(114\) 0 0
\(115\) 1.76441 3.05606i 0.164532 0.284979i
\(116\) 8.17059 0.758620
\(117\) 0 0
\(118\) 22.6488 2.08499
\(119\) 0.900054 1.55894i 0.0825078 0.142908i
\(120\) 0 0
\(121\) 5.42408 + 9.39478i 0.493098 + 0.854071i
\(122\) 9.24874 + 16.0193i 0.837342 + 1.45032i
\(123\) 0 0
\(124\) 4.32036 7.48308i 0.387979 0.672000i
\(125\) −12.0860 −1.08100
\(126\) 0 0
\(127\) −16.4175 −1.45682 −0.728408 0.685144i \(-0.759739\pi\)
−0.728408 + 0.685144i \(0.759739\pi\)
\(128\) 1.55088 2.68621i 0.137080 0.237430i
\(129\) 0 0
\(130\) 2.58375 + 4.47518i 0.226609 + 0.392499i
\(131\) −1.74624 3.02458i −0.152570 0.264259i 0.779602 0.626276i \(-0.215422\pi\)
−0.932172 + 0.362017i \(0.882088\pi\)
\(132\) 0 0
\(133\) −7.12802 + 12.3461i −0.618078 + 1.07054i
\(134\) 7.07843 0.611483
\(135\) 0 0
\(136\) 0.389667 0.0334137
\(137\) 9.27885 16.0714i 0.792746 1.37308i −0.131515 0.991314i \(-0.541984\pi\)
0.924261 0.381761i \(-0.124682\pi\)
\(138\) 0 0
\(139\) −4.86814 8.43186i −0.412910 0.715181i 0.582296 0.812977i \(-0.302154\pi\)
−0.995207 + 0.0977953i \(0.968821\pi\)
\(140\) 3.15838 + 5.47048i 0.266932 + 0.462340i
\(141\) 0 0
\(142\) 14.1523 24.5125i 1.18764 2.05705i
\(143\) −0.529880 −0.0443108
\(144\) 0 0
\(145\) 8.84816 0.734800
\(146\) 0.109052 0.188884i 0.00902522 0.0156321i
\(147\) 0 0
\(148\) −6.48758 11.2368i −0.533276 0.923660i
\(149\) −9.85504 17.0694i −0.807356 1.39838i −0.914689 0.404159i \(-0.867564\pi\)
0.107333 0.994223i \(-0.465769\pi\)
\(150\) 0 0
\(151\) 0.120194 0.208182i 0.00978126 0.0169416i −0.861093 0.508447i \(-0.830220\pi\)
0.870875 + 0.491505i \(0.163553\pi\)
\(152\) −3.08599 −0.250307
\(153\) 0 0
\(154\) −1.36738 −0.110187
\(155\) 4.67863 8.10363i 0.375797 0.650899i
\(156\) 0 0
\(157\) 11.1083 + 19.2402i 0.886540 + 1.53553i 0.843939 + 0.536440i \(0.180231\pi\)
0.0426010 + 0.999092i \(0.486436\pi\)
\(158\) 10.4651 + 18.1261i 0.832559 + 1.44203i
\(159\) 0 0
\(160\) −7.52430 + 13.0325i −0.594848 + 1.03031i
\(161\) 3.25860 0.256814
\(162\) 0 0
\(163\) −11.9743 −0.937901 −0.468950 0.883225i \(-0.655368\pi\)
−0.468950 + 0.883225i \(0.655368\pi\)
\(164\) 1.80970 3.13449i 0.141314 0.244763i
\(165\) 0 0
\(166\) 4.10399 + 7.10833i 0.318532 + 0.551713i
\(167\) 5.90943 + 10.2354i 0.457285 + 0.792042i 0.998816 0.0486392i \(-0.0154885\pi\)
−0.541531 + 0.840681i \(0.682155\pi\)
\(168\) 0 0
\(169\) 5.57543 9.65694i 0.428880 0.742841i
\(170\) −3.80011 −0.291455
\(171\) 0 0
\(172\) −22.6397 −1.72626
\(173\) −2.52558 + 4.37443i −0.192016 + 0.332582i −0.945918 0.324405i \(-0.894836\pi\)
0.753902 + 0.656987i \(0.228169\pi\)
\(174\) 0 0
\(175\) −1.07997 1.87056i −0.0816379 0.141401i
\(176\) −0.849440 1.47127i −0.0640290 0.110901i
\(177\) 0 0
\(178\) 2.12802 3.68584i 0.159502 0.276265i
\(179\) −1.64881 −0.123238 −0.0616188 0.998100i \(-0.519626\pi\)
−0.0616188 + 0.998100i \(0.519626\pi\)
\(180\) 0 0
\(181\) 8.87905 0.659975 0.329987 0.943985i \(-0.392956\pi\)
0.329987 + 0.943985i \(0.392956\pi\)
\(182\) −2.38589 + 4.13248i −0.176854 + 0.306320i
\(183\) 0 0
\(184\) 0.352693 + 0.610881i 0.0260008 + 0.0450348i
\(185\) −7.02558 12.1687i −0.516531 0.894657i
\(186\) 0 0
\(187\) 0.194834 0.337462i 0.0142476 0.0246776i
\(188\) −7.46915 −0.544744
\(189\) 0 0
\(190\) 30.0951 2.18333
\(191\) −5.86489 + 10.1583i −0.424368 + 0.735027i −0.996361 0.0852312i \(-0.972837\pi\)
0.571993 + 0.820259i \(0.306170\pi\)
\(192\) 0 0
\(193\) 2.75961 + 4.77979i 0.198641 + 0.344057i 0.948088 0.318008i \(-0.103014\pi\)
−0.749447 + 0.662064i \(0.769680\pi\)
\(194\) −4.73430 8.20006i −0.339903 0.588730i
\(195\) 0 0
\(196\) 3.38385 5.86101i 0.241704 0.418643i
\(197\) −13.3832 −0.953511 −0.476755 0.879036i \(-0.658187\pi\)
−0.476755 + 0.879036i \(0.658187\pi\)
\(198\) 0 0
\(199\) −23.5917 −1.67237 −0.836185 0.548447i \(-0.815219\pi\)
−0.836185 + 0.548447i \(0.815219\pi\)
\(200\) 0.233779 0.404917i 0.0165307 0.0286320i
\(201\) 0 0
\(202\) −13.0119 22.5372i −0.915512 1.58571i
\(203\) 4.08530 + 7.07594i 0.286732 + 0.496634i
\(204\) 0 0
\(205\) 1.95977 3.39443i 0.136877 0.237077i
\(206\) −13.8341 −0.963867
\(207\) 0 0
\(208\) −5.92861 −0.411075
\(209\) −1.54299 + 2.67254i −0.106731 + 0.184864i
\(210\) 0 0
\(211\) 2.50858 + 4.34499i 0.172698 + 0.299121i 0.939362 0.342927i \(-0.111418\pi\)
−0.766664 + 0.642048i \(0.778085\pi\)
\(212\) −1.87981 3.25592i −0.129106 0.223617i
\(213\) 0 0
\(214\) −15.5033 + 26.8525i −1.05978 + 1.83560i
\(215\) −24.5172 −1.67206
\(216\) 0 0
\(217\) 8.64071 0.586570
\(218\) −7.03441 + 12.1840i −0.476431 + 0.825202i
\(219\) 0 0
\(220\) 0.683691 + 1.18419i 0.0460945 + 0.0798380i
\(221\) −0.679914 1.17765i −0.0457359 0.0792170i
\(222\) 0 0
\(223\) −9.01118 + 15.6078i −0.603433 + 1.04518i 0.388864 + 0.921295i \(0.372868\pi\)
−0.992297 + 0.123882i \(0.960466\pi\)
\(224\) −13.8962 −0.928480
\(225\) 0 0
\(226\) 36.2956 2.41435
\(227\) −8.79404 + 15.2317i −0.583681 + 1.01096i 0.411358 + 0.911474i \(0.365055\pi\)
−0.995038 + 0.0994908i \(0.968279\pi\)
\(228\) 0 0
\(229\) −0.431700 0.747727i −0.0285275 0.0494112i 0.851409 0.524502i \(-0.175748\pi\)
−0.879937 + 0.475091i \(0.842415\pi\)
\(230\) −3.43953 5.95743i −0.226796 0.392821i
\(231\) 0 0
\(232\) −0.884339 + 1.53172i −0.0580597 + 0.100562i
\(233\) 16.6249 1.08914 0.544568 0.838717i \(-0.316694\pi\)
0.544568 + 0.838717i \(0.316694\pi\)
\(234\) 0 0
\(235\) −8.08855 −0.527639
\(236\) 10.4572 18.1124i 0.680707 1.17902i
\(237\) 0 0
\(238\) −1.75455 3.03897i −0.113731 0.196987i
\(239\) −8.27912 14.3399i −0.535532 0.927568i −0.999137 0.0415264i \(-0.986778\pi\)
0.463606 0.886042i \(-0.346555\pi\)
\(240\) 0 0
\(241\) −7.06116 + 12.2303i −0.454850 + 0.787823i −0.998680 0.0513728i \(-0.983640\pi\)
0.543830 + 0.839195i \(0.316974\pi\)
\(242\) 21.1473 1.35940
\(243\) 0 0
\(244\) 17.0810 1.09350
\(245\) 3.66447 6.34705i 0.234114 0.405498i
\(246\) 0 0
\(247\) 5.38461 + 9.32642i 0.342614 + 0.593426i
\(248\) 0.935222 + 1.61985i 0.0593866 + 0.102861i
\(249\) 0 0
\(250\) −11.7801 + 20.4038i −0.745041 + 1.29045i
\(251\) −6.28790 −0.396889 −0.198444 0.980112i \(-0.563589\pi\)
−0.198444 + 0.980112i \(0.563589\pi\)
\(252\) 0 0
\(253\) 0.705385 0.0443472
\(254\) −16.0020 + 27.7163i −1.00406 + 1.73908i
\(255\) 0 0
\(256\) −9.35221 16.1985i −0.584513 1.01241i
\(257\) −4.60127 7.96963i −0.287019 0.497132i 0.686078 0.727528i \(-0.259331\pi\)
−0.973097 + 0.230397i \(0.925998\pi\)
\(258\) 0 0
\(259\) 6.48758 11.2368i 0.403118 0.698222i
\(260\) 4.77178 0.295933
\(261\) 0 0
\(262\) −6.80820 −0.420612
\(263\) −11.2205 + 19.4344i −0.691883 + 1.19838i 0.279338 + 0.960193i \(0.409885\pi\)
−0.971220 + 0.238183i \(0.923448\pi\)
\(264\) 0 0
\(265\) −2.03569 3.52592i −0.125052 0.216596i
\(266\) 13.8953 + 24.0673i 0.851973 + 1.47566i
\(267\) 0 0
\(268\) 3.26819 5.66067i 0.199637 0.345781i
\(269\) 2.85669 0.174175 0.0870876 0.996201i \(-0.472244\pi\)
0.0870876 + 0.996201i \(0.472244\pi\)
\(270\) 0 0
\(271\) −19.8653 −1.20673 −0.603366 0.797464i \(-0.706174\pi\)
−0.603366 + 0.797464i \(0.706174\pi\)
\(272\) 2.17991 3.77572i 0.132177 0.228937i
\(273\) 0 0
\(274\) −18.0881 31.3294i −1.09274 1.89268i
\(275\) −0.233779 0.404917i −0.0140974 0.0244174i
\(276\) 0 0
\(277\) 11.2399 19.4681i 0.675340 1.16972i −0.301029 0.953615i \(-0.597330\pi\)
0.976369 0.216109i \(-0.0693366\pi\)
\(278\) −18.9798 −1.13833
\(279\) 0 0
\(280\) −1.36738 −0.0817168
\(281\) 1.17512 2.03538i 0.0701021 0.121420i −0.828844 0.559480i \(-0.811001\pi\)
0.898946 + 0.438060i \(0.144334\pi\)
\(282\) 0 0
\(283\) 2.66447 + 4.61499i 0.158386 + 0.274333i 0.934287 0.356522i \(-0.116038\pi\)
−0.775901 + 0.630855i \(0.782704\pi\)
\(284\) −13.0686 22.6354i −0.775477 1.34317i
\(285\) 0 0
\(286\) −0.516470 + 0.894553i −0.0305395 + 0.0528960i
\(287\) 3.61940 0.213646
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 8.62424 14.9376i 0.506433 0.877168i
\(291\) 0 0
\(292\) −0.100701 0.174420i −0.00589309 0.0102071i
\(293\) −1.51183 2.61857i −0.0883222 0.152979i 0.818480 0.574535i \(-0.194817\pi\)
−0.906802 + 0.421557i \(0.861484\pi\)
\(294\) 0 0
\(295\) 11.3244 19.6144i 0.659332 1.14200i
\(296\) 2.80871 0.163253
\(297\) 0 0
\(298\) −38.4226 −2.22576
\(299\) 1.23080 2.13180i 0.0711788 0.123285i
\(300\) 0 0
\(301\) −11.3199 19.6066i −0.652466 1.13011i
\(302\) −0.234305 0.405828i −0.0134827 0.0233528i
\(303\) 0 0
\(304\) −17.2639 + 29.9020i −0.990154 + 1.71500i
\(305\) 18.4975 1.05916
\(306\) 0 0
\(307\) 28.1214 1.60497 0.802485 0.596672i \(-0.203511\pi\)
0.802485 + 0.596672i \(0.203511\pi\)
\(308\) −0.631336 + 1.09351i −0.0359737 + 0.0623083i
\(309\) 0 0
\(310\) −9.12046 15.7971i −0.518008 0.897215i
\(311\) −9.13916 15.8295i −0.518234 0.897608i −0.999776 0.0211847i \(-0.993256\pi\)
0.481541 0.876423i \(-0.340077\pi\)
\(312\) 0 0
\(313\) 9.50809 16.4685i 0.537429 0.930855i −0.461612 0.887082i \(-0.652729\pi\)
0.999042 0.0437730i \(-0.0139378\pi\)
\(314\) 43.3088 2.44406
\(315\) 0 0
\(316\) 19.3274 1.08725
\(317\) 3.04155 5.26812i 0.170830 0.295887i −0.767880 0.640594i \(-0.778688\pi\)
0.938710 + 0.344707i \(0.112022\pi\)
\(318\) 0 0
\(319\) 0.884339 + 1.53172i 0.0495135 + 0.0857598i
\(320\) 6.16877 + 10.6846i 0.344845 + 0.597289i
\(321\) 0 0
\(322\) 3.17614 5.50123i 0.176999 0.306571i
\(323\) −7.91955 −0.440655
\(324\) 0 0
\(325\) −1.63165 −0.0905074
\(326\) −11.6713 + 20.2153i −0.646413 + 1.11962i
\(327\) 0 0
\(328\) 0.391743 + 0.678519i 0.0216304 + 0.0374650i
\(329\) −3.73457 6.46847i −0.205894 0.356618i
\(330\) 0 0
\(331\) −1.80416 + 3.12489i −0.0991653 + 0.171759i −0.911339 0.411656i \(-0.864951\pi\)
0.812174 + 0.583415i \(0.198284\pi\)
\(332\) 7.57944 0.415976
\(333\) 0 0
\(334\) 23.0395 1.26067
\(335\) 3.53922 6.13010i 0.193368 0.334923i
\(336\) 0 0
\(337\) −0.773480 1.33971i −0.0421341 0.0729785i 0.844189 0.536045i \(-0.180082\pi\)
−0.886323 + 0.463067i \(0.846749\pi\)
\(338\) −10.8687 18.8251i −0.591178 1.02395i
\(339\) 0 0
\(340\) −1.75455 + 3.03897i −0.0951540 + 0.164812i
\(341\) 1.87044 0.101290
\(342\) 0 0
\(343\) 19.3685 1.04580
\(344\) 2.45040 4.24421i 0.132117 0.228833i
\(345\) 0 0
\(346\) 4.92332 + 8.52745i 0.264680 + 0.458438i
\(347\) 16.6333 + 28.8098i 0.892925 + 1.54659i 0.836352 + 0.548193i \(0.184684\pi\)
0.0565729 + 0.998398i \(0.481983\pi\)
\(348\) 0 0
\(349\) −8.23963 + 14.2715i −0.441057 + 0.763934i −0.997768 0.0667725i \(-0.978730\pi\)
0.556711 + 0.830706i \(0.312063\pi\)
\(350\) −4.21055 −0.225063
\(351\) 0 0
\(352\) −3.00809 −0.160332
\(353\) 2.10580 3.64735i 0.112080 0.194129i −0.804528 0.593914i \(-0.797582\pi\)
0.916609 + 0.399785i \(0.130915\pi\)
\(354\) 0 0
\(355\) −14.1523 24.5125i −0.751127 1.30099i
\(356\) −1.96506 3.40359i −0.104148 0.180390i
\(357\) 0 0
\(358\) −1.60708 + 2.78355i −0.0849369 + 0.147115i
\(359\) −14.6145 −0.771323 −0.385662 0.922640i \(-0.626027\pi\)
−0.385662 + 0.922640i \(0.626027\pi\)
\(360\) 0 0
\(361\) 43.7192 2.30101
\(362\) 8.65435 14.9898i 0.454863 0.787845i
\(363\) 0 0
\(364\) 2.20318 + 3.81603i 0.115478 + 0.200014i
\(365\) −0.109052 0.188884i −0.00570805 0.00988663i
\(366\) 0 0
\(367\) 1.57970 2.73612i 0.0824596 0.142824i −0.821846 0.569709i \(-0.807056\pi\)
0.904306 + 0.426885i \(0.140389\pi\)
\(368\) 7.89227 0.411413
\(369\) 0 0
\(370\) −27.3911 −1.42400
\(371\) 1.87981 3.25592i 0.0975947 0.169039i
\(372\) 0 0
\(373\) −0.306973 0.531693i −0.0158945 0.0275300i 0.857969 0.513702i \(-0.171726\pi\)
−0.873863 + 0.486172i \(0.838393\pi\)
\(374\) −0.379806 0.657843i −0.0196393 0.0340163i
\(375\) 0 0
\(376\) 0.808419 1.40022i 0.0416910 0.0722109i
\(377\) 6.17218 0.317884
\(378\) 0 0
\(379\) 4.19989 0.215734 0.107867 0.994165i \(-0.465598\pi\)
0.107867 + 0.994165i \(0.465598\pi\)
\(380\) 13.8953 24.0673i 0.712812 1.23463i
\(381\) 0 0
\(382\) 11.4329 + 19.8024i 0.584960 + 1.01318i
\(383\) −17.0708 29.5675i −0.872277 1.51083i −0.859635 0.510908i \(-0.829309\pi\)
−0.0126415 0.999920i \(-0.504024\pi\)
\(384\) 0 0
\(385\) −0.683691 + 1.18419i −0.0348441 + 0.0603518i
\(386\) 10.7591 0.547624
\(387\) 0 0
\(388\) −8.74353 −0.443885
\(389\) −8.77401 + 15.1970i −0.444860 + 0.770520i −0.998042 0.0625403i \(-0.980080\pi\)
0.553183 + 0.833060i \(0.313413\pi\)
\(390\) 0 0
\(391\) 0.905113 + 1.56770i 0.0457735 + 0.0792820i
\(392\) 0.732498 + 1.26872i 0.0369968 + 0.0640803i
\(393\) 0 0
\(394\) −13.0445 + 22.5937i −0.657171 + 1.13825i
\(395\) 20.9302 1.05311
\(396\) 0 0
\(397\) −22.4827 −1.12837 −0.564187 0.825647i \(-0.690810\pi\)
−0.564187 + 0.825647i \(0.690810\pi\)
\(398\) −22.9947 + 39.8279i −1.15262 + 1.99639i
\(399\) 0 0
\(400\) −2.61566 4.53046i −0.130783 0.226523i
\(401\) 3.95392 + 6.84839i 0.197449 + 0.341992i 0.947701 0.319160i \(-0.103401\pi\)
−0.750251 + 0.661153i \(0.770068\pi\)
\(402\) 0 0
\(403\) 3.26366 5.65282i 0.162574 0.281587i
\(404\) −24.0309 −1.19558
\(405\) 0 0
\(406\) 15.9276 0.790476
\(407\) 1.40436 2.43242i 0.0696114 0.120571i
\(408\) 0 0
\(409\) −9.53234 16.5105i −0.471344 0.816391i 0.528119 0.849170i \(-0.322898\pi\)
−0.999463 + 0.0327792i \(0.989564\pi\)
\(410\) −3.82036 6.61705i −0.188674 0.326793i
\(411\) 0 0
\(412\) −6.38736 + 11.0632i −0.314683 + 0.545046i
\(413\) 20.9144 1.02913
\(414\) 0 0
\(415\) 8.20799 0.402914
\(416\) −5.24870 + 9.09101i −0.257339 + 0.445724i
\(417\) 0 0
\(418\) 3.00789 + 5.20982i 0.147121 + 0.254821i
\(419\) −4.55233 7.88486i −0.222396 0.385201i 0.733139 0.680079i \(-0.238054\pi\)
−0.955535 + 0.294878i \(0.904721\pi\)
\(420\) 0 0
\(421\) 11.3322 19.6280i 0.552299 0.956610i −0.445809 0.895128i \(-0.647084\pi\)
0.998108 0.0614820i \(-0.0195827\pi\)
\(422\) 9.78039 0.476102
\(423\) 0 0
\(424\) 0.813838 0.0395235
\(425\) 0.599946 1.03914i 0.0291017 0.0504056i
\(426\) 0 0
\(427\) 8.54050 + 14.7926i 0.413304 + 0.715863i
\(428\) 14.3161 + 24.7962i 0.691994 + 1.19857i
\(429\) 0 0
\(430\) −23.8968 + 41.3904i −1.15240 + 1.99602i
\(431\) 14.8259 0.714139 0.357069 0.934078i \(-0.383776\pi\)
0.357069 + 0.934078i \(0.383776\pi\)
\(432\) 0 0
\(433\) 1.76633 0.0848842 0.0424421 0.999099i \(-0.486486\pi\)
0.0424421 + 0.999099i \(0.486486\pi\)
\(434\) 8.42204 14.5874i 0.404271 0.700218i
\(435\) 0 0
\(436\) 6.49574 + 11.2509i 0.311089 + 0.538823i
\(437\) −7.16808 12.4155i −0.342896 0.593913i
\(438\) 0 0
\(439\) −0.416945 + 0.722170i −0.0198997 + 0.0344673i −0.875804 0.482667i \(-0.839668\pi\)
0.855904 + 0.517135i \(0.173001\pi\)
\(440\) −0.295996 −0.0141110
\(441\) 0 0
\(442\) −2.65083 −0.126087
\(443\) −11.2371 + 19.4632i −0.533889 + 0.924724i 0.465327 + 0.885139i \(0.345937\pi\)
−0.999216 + 0.0395846i \(0.987397\pi\)
\(444\) 0 0
\(445\) −2.12802 3.68584i −0.100878 0.174725i
\(446\) 17.5663 + 30.4257i 0.831787 + 1.44070i
\(447\) 0 0
\(448\) −5.69638 + 9.86643i −0.269129 + 0.466145i
\(449\) 23.4874 1.10844 0.554219 0.832371i \(-0.313017\pi\)
0.554219 + 0.832371i \(0.313017\pi\)
\(450\) 0 0
\(451\) 0.783487 0.0368929
\(452\) 16.7581 29.0258i 0.788234 1.36526i
\(453\) 0 0
\(454\) 17.1430 + 29.6925i 0.804560 + 1.39354i
\(455\) 2.38589 + 4.13248i 0.111852 + 0.193734i
\(456\) 0 0
\(457\) −6.56857 + 11.3771i −0.307265 + 0.532198i −0.977763 0.209713i \(-0.932747\pi\)
0.670498 + 0.741911i \(0.266080\pi\)
\(458\) −1.68310 −0.0786461
\(459\) 0 0
\(460\) −6.35227 −0.296176
\(461\) 7.45471 12.9119i 0.347201 0.601369i −0.638550 0.769580i \(-0.720466\pi\)
0.985751 + 0.168211i \(0.0537989\pi\)
\(462\) 0 0
\(463\) 16.4684 + 28.5240i 0.765349 + 1.32562i 0.940062 + 0.341004i \(0.110767\pi\)
−0.174712 + 0.984620i \(0.555900\pi\)
\(464\) 9.89451 + 17.1378i 0.459341 + 0.795602i
\(465\) 0 0
\(466\) 16.2042 28.0665i 0.750645 1.30016i
\(467\) −21.3041 −0.985836 −0.492918 0.870076i \(-0.664070\pi\)
−0.492918 + 0.870076i \(0.664070\pi\)
\(468\) 0 0
\(469\) 6.53638 0.301822
\(470\) −7.88385 + 13.6552i −0.363655 + 0.629869i
\(471\) 0 0
\(472\) 2.26366 + 3.92077i 0.104193 + 0.180468i
\(473\) −2.45040 4.24421i −0.112669 0.195149i
\(474\) 0 0
\(475\) −4.75130 + 8.22949i −0.218005 + 0.377595i
\(476\) −3.24039 −0.148523
\(477\) 0 0
\(478\) −32.2784 −1.47638
\(479\) 6.11487 10.5913i 0.279395 0.483927i −0.691839 0.722052i \(-0.743199\pi\)
0.971235 + 0.238125i \(0.0765327\pi\)
\(480\) 0 0
\(481\) −4.90081 8.48845i −0.223458 0.387040i
\(482\) 13.7649 + 23.8416i 0.626976 + 1.08595i
\(483\) 0 0
\(484\) 9.76393 16.9116i 0.443815 0.768710i
\(485\) −9.46861 −0.429947
\(486\) 0 0
\(487\) 1.97774 0.0896201 0.0448100 0.998996i \(-0.485732\pi\)
0.0448100 + 0.998996i \(0.485732\pi\)
\(488\) −1.84875 + 3.20213i −0.0836890 + 0.144954i
\(489\) 0 0
\(490\) −7.14346 12.3728i −0.322709 0.558948i
\(491\) −8.47730 14.6831i −0.382575 0.662639i 0.608855 0.793282i \(-0.291629\pi\)
−0.991430 + 0.130643i \(0.958296\pi\)
\(492\) 0 0
\(493\) −2.26947 + 3.93084i −0.102212 + 0.177036i
\(494\) 20.9934 0.944536
\(495\) 0 0
\(496\) 20.9276 0.939679
\(497\) 13.0686 22.6354i 0.586205 1.01534i
\(498\) 0 0
\(499\) 11.0609 + 19.1581i 0.495156 + 0.857636i 0.999984 0.00558426i \(-0.00177754\pi\)
−0.504828 + 0.863220i \(0.668444\pi\)
\(500\) 10.8780 + 18.8413i 0.486481 + 0.842609i
\(501\) 0 0
\(502\) −6.12877 + 10.6153i −0.273541 + 0.473786i
\(503\) 3.44784 0.153731 0.0768657 0.997041i \(-0.475509\pi\)
0.0768657 + 0.997041i \(0.475509\pi\)
\(504\) 0 0
\(505\) −26.0237 −1.15804
\(506\) 0.687534 1.19084i 0.0305646 0.0529395i
\(507\) 0 0
\(508\) 14.7766 + 25.5939i 0.655607 + 1.13554i
\(509\) 4.93421 + 8.54630i 0.218705 + 0.378808i 0.954412 0.298491i \(-0.0964834\pi\)
−0.735707 + 0.677300i \(0.763150\pi\)
\(510\) 0 0
\(511\) 0.100701 0.174420i 0.00445476 0.00771587i
\(512\) −30.2586 −1.33725
\(513\) 0 0
\(514\) −17.9393 −0.791268
\(515\) −6.91705 + 11.9807i −0.304802 + 0.527932i
\(516\) 0 0
\(517\) −0.808419 1.40022i −0.0355542 0.0615817i
\(518\) −12.6468 21.9049i −0.555668 0.962446i
\(519\) 0 0
\(520\) −0.516470 + 0.894553i −0.0226487 + 0.0392287i
\(521\) −9.13811 −0.400348 −0.200174 0.979760i \(-0.564151\pi\)
−0.200174 + 0.979760i \(0.564151\pi\)
\(522\) 0 0
\(523\) −21.7036 −0.949031 −0.474515 0.880247i \(-0.657377\pi\)
−0.474515 + 0.880247i \(0.657377\pi\)
\(524\) −3.14342 + 5.44457i −0.137321 + 0.237847i
\(525\) 0 0
\(526\) 21.8730 + 37.8851i 0.953708 + 1.65187i
\(527\) 2.40005 + 4.15702i 0.104548 + 0.181082i
\(528\) 0 0
\(529\) 9.86154 17.0807i 0.428763 0.742639i
\(530\) −7.93671 −0.344749
\(531\) 0 0
\(532\) 25.6624 1.11261
\(533\) 1.36707 2.36784i 0.0592145 0.102563i
\(534\) 0 0
\(535\) 15.5033 + 26.8525i 0.670266 + 1.16093i
\(536\) 0.707461 + 1.22536i 0.0305577 + 0.0529274i
\(537\) 0 0
\(538\) 2.78439 4.82271i 0.120044 0.207922i
\(539\) 1.46500 0.0631019
\(540\) 0 0
\(541\) 26.5284 1.14054 0.570272 0.821456i \(-0.306838\pi\)
0.570272 + 0.821456i \(0.306838\pi\)
\(542\) −19.3626 + 33.5370i −0.831695 + 1.44054i
\(543\) 0 0
\(544\) −3.85983 6.68542i −0.165489 0.286635i
\(545\) 7.03441 + 12.1840i 0.301321 + 0.521904i
\(546\) 0 0
\(547\) −0.356201 + 0.616958i −0.0152300 + 0.0263792i −0.873540 0.486752i \(-0.838181\pi\)
0.858310 + 0.513132i \(0.171515\pi\)
\(548\) −33.4059 −1.42703
\(549\) 0 0
\(550\) −0.911452 −0.0388644
\(551\) 17.9732 31.1305i 0.765684 1.32620i
\(552\) 0 0
\(553\) 9.66371 + 16.7380i 0.410943 + 0.711774i
\(554\) −21.9109 37.9508i −0.930906 1.61238i
\(555\) 0 0
\(556\) −8.76317 + 15.1783i −0.371641 + 0.643702i
\(557\) −4.23942 −0.179630 −0.0898149 0.995958i \(-0.528628\pi\)
−0.0898149 + 0.995958i \(0.528628\pi\)
\(558\) 0 0
\(559\) −17.1024 −0.723354
\(560\) −7.64955 + 13.2494i −0.323252 + 0.559890i
\(561\) 0 0
\(562\) −2.29077 3.96773i −0.0966304 0.167369i
\(563\) 0.720882 + 1.24860i 0.0303815 + 0.0526224i 0.880816 0.473458i \(-0.156994\pi\)
−0.850435 + 0.526080i \(0.823661\pi\)
\(564\) 0 0
\(565\) 18.1478 31.4329i 0.763483 1.32239i
\(566\) 10.3882 0.436647
\(567\) 0 0
\(568\) 5.65787 0.237399
\(569\) −14.6505 + 25.3754i −0.614181 + 1.06379i 0.376346 + 0.926479i \(0.377180\pi\)
−0.990528 + 0.137314i \(0.956153\pi\)
\(570\) 0 0
\(571\) −21.2171 36.7491i −0.887908 1.53790i −0.842344 0.538941i \(-0.818825\pi\)
−0.0455647 0.998961i \(-0.514509\pi\)
\(572\) 0.476920 + 0.826051i 0.0199410 + 0.0345389i
\(573\) 0 0
\(574\) 3.52780 6.11034i 0.147248 0.255040i
\(575\) 2.17207 0.0905818
\(576\) 0 0
\(577\) 18.9824 0.790248 0.395124 0.918628i \(-0.370702\pi\)
0.395124 + 0.918628i \(0.370702\pi\)
\(578\) 0.974693 1.68822i 0.0405419 0.0702206i
\(579\) 0 0
\(580\) −7.96382 13.7937i −0.330680 0.572754i
\(581\) 3.78972 + 6.56399i 0.157224 + 0.272320i
\(582\) 0 0
\(583\) 0.406919 0.704805i 0.0168529 0.0291900i
\(584\) 0.0435973 0.00180407
\(585\) 0 0
\(586\) −5.89429 −0.243491
\(587\) −15.7450 + 27.2711i −0.649864 + 1.12560i 0.333291 + 0.942824i \(0.391841\pi\)
−0.983155 + 0.182774i \(0.941492\pi\)
\(588\) 0 0
\(589\) −19.0073 32.9217i −0.783184 1.35651i
\(590\) −22.0756 38.2361i −0.908840 1.57416i
\(591\) 0 0
\(592\) 15.7128 27.2153i 0.645792 1.11854i
\(593\) 15.1442 0.621896 0.310948 0.950427i \(-0.399354\pi\)
0.310948 + 0.950427i \(0.399354\pi\)
\(594\) 0 0
\(595\) −3.50911 −0.143859
\(596\) −17.7401 + 30.7268i −0.726664 + 1.25862i
\(597\) 0 0
\(598\) −2.39930 4.15571i −0.0981146 0.169940i
\(599\) −3.48678 6.03928i −0.142466 0.246758i 0.785959 0.618279i \(-0.212170\pi\)
−0.928425 + 0.371521i \(0.878837\pi\)
\(600\) 0 0
\(601\) −16.7131 + 28.9479i −0.681740 + 1.18081i 0.292710 + 0.956201i \(0.405443\pi\)
−0.974449 + 0.224607i \(0.927890\pi\)
\(602\) −44.1336 −1.79875
\(603\) 0 0
\(604\) −0.432725 −0.0176073
\(605\) 10.5736 18.3141i 0.429879 0.744572i
\(606\) 0 0
\(607\) 6.17629 + 10.6976i 0.250688 + 0.434204i 0.963715 0.266932i \(-0.0860099\pi\)
−0.713028 + 0.701136i \(0.752677\pi\)
\(608\) 30.5681 + 52.9455i 1.23970 + 2.14722i
\(609\) 0 0
\(610\) 18.0294 31.2278i 0.729988 1.26438i
\(611\) −5.64230 −0.228263
\(612\) 0 0
\(613\) 17.6107 0.711288 0.355644 0.934622i \(-0.384262\pi\)
0.355644 + 0.934622i \(0.384262\pi\)
\(614\) 27.4097 47.4750i 1.10617 1.91593i
\(615\) 0 0
\(616\) −0.136665 0.236710i −0.00550637 0.00953731i
\(617\) 16.4613 + 28.5117i 0.662705 + 1.14784i 0.979902 + 0.199480i \(0.0639251\pi\)
−0.317197 + 0.948360i \(0.602742\pi\)
\(618\) 0 0
\(619\) 5.40047 9.35390i 0.217063 0.375965i −0.736846 0.676061i \(-0.763685\pi\)
0.953909 + 0.300096i \(0.0970188\pi\)
\(620\) −16.8441 −0.676475
\(621\) 0 0
\(622\) −35.6315 −1.42869
\(623\) 1.96506 3.40359i 0.0787285 0.136362i
\(624\) 0 0
\(625\) 8.78040 + 15.2081i 0.351216 + 0.608324i
\(626\) −18.5350 32.1035i −0.740806 1.28311i
\(627\) 0 0
\(628\) 19.9962 34.6344i 0.797934 1.38206i
\(629\) 7.20799 0.287401
\(630\) 0 0
\(631\) −13.3668 −0.532126 −0.266063 0.963956i \(-0.585723\pi\)
−0.266063 + 0.963956i \(0.585723\pi\)
\(632\) −2.09189 + 3.62326i −0.0832110 + 0.144126i
\(633\) 0 0
\(634\) −5.92915 10.2696i −0.235477 0.407858i
\(635\) 16.0020 + 27.7163i 0.635020 + 1.09989i
\(636\) 0 0
\(637\) 2.55621 4.42749i 0.101281 0.175423i
\(638\) 3.44784 0.136501
\(639\) 0 0
\(640\) −6.04654 −0.239011
\(641\) 13.9580 24.1760i 0.551308 0.954894i −0.446872 0.894598i \(-0.647462\pi\)
0.998181 0.0602960i \(-0.0192045\pi\)
\(642\) 0 0
\(643\) −20.8497 36.1127i −0.822230 1.42414i −0.904018 0.427495i \(-0.859396\pi\)
0.0817875 0.996650i \(-0.473937\pi\)
\(644\) −2.93292 5.07996i −0.115573 0.200178i
\(645\) 0 0
\(646\) −7.71913 + 13.3699i −0.303705 + 0.526033i
\(647\) −0.889627 −0.0349748 −0.0174874 0.999847i \(-0.505567\pi\)
−0.0174874 + 0.999847i \(0.505567\pi\)
\(648\) 0 0
\(649\) 4.52732 0.177713
\(650\) −1.59035 + 2.75457i −0.0623788 + 0.108043i
\(651\) 0 0
\(652\) 10.7775 + 18.6672i 0.422081 + 0.731065i
\(653\) −23.6265 40.9223i −0.924577 1.60141i −0.792240 0.610210i \(-0.791085\pi\)
−0.132338 0.991205i \(-0.542248\pi\)
\(654\) 0 0
\(655\) −3.40410 + 5.89608i −0.133009 + 0.230379i
\(656\) 8.76612 0.342259
\(657\) 0 0
\(658\) −14.5603 −0.567618
\(659\) 12.7791 22.1341i 0.497804 0.862221i −0.502193 0.864756i \(-0.667473\pi\)
0.999997 + 0.00253413i \(0.000806640\pi\)
\(660\) 0 0
\(661\) −9.35152 16.1973i −0.363732 0.630002i 0.624840 0.780753i \(-0.285164\pi\)
−0.988572 + 0.150751i \(0.951831\pi\)
\(662\) 3.51700 + 6.09162i 0.136692 + 0.236757i
\(663\) 0 0
\(664\) −0.820356 + 1.42090i −0.0318360 + 0.0551415i
\(665\) 27.7905 1.07767
\(666\) 0 0
\(667\) −8.21651 −0.318145
\(668\) 10.6376 18.4249i 0.411582 0.712880i
\(669\) 0 0
\(670\) −6.89930 11.9499i −0.266543 0.461666i
\(671\) 1.84875 + 3.20213i 0.0713702 + 0.123617i
\(672\) 0 0
\(673\) 5.44460 9.43032i 0.209874 0.363512i −0.741801 0.670620i \(-0.766028\pi\)
0.951675 + 0.307108i \(0.0993613\pi\)
\(674\) −3.01562 −0.116157
\(675\) 0 0
\(676\) −20.0728 −0.772030
\(677\) −18.6000 + 32.2161i −0.714856 + 1.23817i 0.248160 + 0.968719i \(0.420174\pi\)
−0.963015 + 0.269447i \(0.913159\pi\)
\(678\) 0 0
\(679\) −4.37176 7.57212i −0.167773 0.290591i
\(680\) −0.379806 0.657843i −0.0145649 0.0252271i
\(681\) 0 0
\(682\) 1.82311 3.15772i 0.0698104 0.120915i
\(683\) 0.232833 0.00890910 0.00445455 0.999990i \(-0.498582\pi\)
0.00445455 + 0.999990i \(0.498582\pi\)
\(684\) 0 0
\(685\) −36.1761 −1.38222
\(686\) 18.8783 32.6982i 0.720777 1.24842i
\(687\) 0 0
\(688\) −27.4165 47.4868i −1.04524 1.81042i
\(689\) −1.42003 2.45957i −0.0540989 0.0937021i
\(690\) 0 0
\(691\) 16.2391 28.1270i 0.617766 1.07000i −0.372126 0.928182i \(-0.621371\pi\)
0.989892 0.141820i \(-0.0452956\pi\)
\(692\) 9.09262 0.345650
\(693\) 0 0
\(694\) 64.8496 2.46166
\(695\) −9.48988 + 16.4370i −0.359972 + 0.623489i
\(696\) 0 0
\(697\) 1.00533 + 1.74128i 0.0380795 + 0.0659557i
\(698\) 16.0622 + 27.8206i 0.607964 + 1.05303i
\(699\) 0 0
\(700\) −1.94406 + 3.36721i −0.0734785 + 0.127268i
\(701\) −20.1974 −0.762846 −0.381423 0.924401i \(-0.624566\pi\)
−0.381423 + 0.924401i \(0.624566\pi\)
\(702\) 0 0
\(703\) −57.0840 −2.15296
\(704\) −1.23309 + 2.13577i −0.0464738 + 0.0804950i
\(705\) 0 0
\(706\) −4.10502 7.11010i −0.154494 0.267592i
\(707\) −12.0155 20.8114i −0.451888 0.782693i
\(708\) 0 0
\(709\) 7.25253 12.5618i 0.272375 0.471766i −0.697095 0.716979i \(-0.745524\pi\)
0.969469 + 0.245212i \(0.0788577\pi\)
\(710\) −55.1767 −2.07074
\(711\) 0 0
\(712\) 0.850749 0.0318832
\(713\) −4.34464 + 7.52513i −0.162708 + 0.281818i
\(714\) 0 0
\(715\) 0.516470 + 0.894553i 0.0193149 + 0.0334544i
\(716\) 1.48402 + 2.57039i 0.0554602 + 0.0960600i
\(717\) 0 0
\(718\) −14.2446 + 24.6724i −0.531605 + 0.920767i
\(719\) −6.75756 −0.252015 −0.126007 0.992029i \(-0.540216\pi\)
−0.126007 + 0.992029i \(0.540216\pi\)
\(720\) 0 0
\(721\) −12.7747 −0.475756
\(722\) 42.6128 73.8076i 1.58589 2.74683i
\(723\) 0 0
\(724\) −7.99162 13.8419i −0.297006 0.514430i
\(725\) 2.72312 + 4.71659i 0.101134 + 0.175170i
\(726\) 0 0
\(727\) 1.51895 2.63090i 0.0563349 0.0975749i −0.836483 0.547993i \(-0.815392\pi\)
0.892818 + 0.450419i \(0.148725\pi\)
\(728\) −0.953841 −0.0353517
\(729\) 0 0
\(730\) −0.425169 −0.0157362
\(731\) 6.28844 10.8919i 0.232586 0.402851i
\(732\) 0 0
\(733\) −5.39655 9.34709i −0.199326 0.345243i 0.748984 0.662588i \(-0.230542\pi\)
−0.948310 + 0.317345i \(0.897209\pi\)
\(734\) −3.07944 5.33375i −0.113664 0.196872i
\(735\) 0 0
\(736\) 6.98716 12.1021i 0.257550 0.446090i
\(737\) 1.41492 0.0521193
\(738\) 0 0
\(739\) 8.83251 0.324909 0.162455 0.986716i \(-0.448059\pi\)
0.162455 + 0.986716i \(0.448059\pi\)
\(740\) −12.6468 + 21.9049i −0.464905 + 0.805240i
\(741\) 0 0
\(742\) −3.66447 6.34705i −0.134527 0.233007i
\(743\) −7.09840 12.2948i −0.260415 0.451052i 0.705937 0.708274i \(-0.250526\pi\)
−0.966352 + 0.257223i \(0.917193\pi\)
\(744\) 0 0
\(745\) −19.2113 + 33.2749i −0.703847 + 1.21910i
\(746\) −1.19682 −0.0438186
\(747\) 0 0
\(748\) −0.701443 −0.0256473
\(749\) −14.3161 + 24.7962i −0.523099 + 0.906033i
\(750\) 0 0
\(751\) −10.9724 19.0048i −0.400389 0.693493i 0.593384 0.804919i \(-0.297792\pi\)
−0.993773 + 0.111426i \(0.964458\pi\)
\(752\) −9.04507 15.6665i −0.329840 0.571299i
\(753\) 0 0
\(754\) 6.01598 10.4200i 0.219089 0.379474i
\(755\) −0.468610 −0.0170545
\(756\) 0 0
\(757\) 4.01608 0.145967 0.0729835 0.997333i \(-0.476748\pi\)
0.0729835 + 0.997333i \(0.476748\pi\)
\(758\) 4.09361 7.09033i 0.148686 0.257533i
\(759\) 0 0
\(760\) 3.00789 + 5.20982i 0.109108 + 0.188980i
\(761\) 3.57309 + 6.18877i 0.129524 + 0.224343i 0.923492 0.383617i \(-0.125322\pi\)
−0.793968 + 0.607960i \(0.791988\pi\)
\(762\) 0 0
\(763\) −6.49574 + 11.2509i −0.235161 + 0.407312i
\(764\) 21.1149 0.763909
\(765\) 0 0
\(766\) −66.5552 −2.40474
\(767\) 7.89953 13.6824i 0.285235 0.494042i
\(768\) 0 0
\(769\) 10.7733 + 18.6598i 0.388494 + 0.672891i 0.992247 0.124280i \(-0.0396621\pi\)
−0.603753 + 0.797171i \(0.706329\pi\)
\(770\) 1.33278 + 2.30844i 0.0480300 + 0.0831904i
\(771\) 0 0
\(772\) 4.96760 8.60413i 0.178788 0.309670i
\(773\) −53.7951 −1.93488 −0.967438 0.253108i \(-0.918547\pi\)
−0.967438 + 0.253108i \(0.918547\pi\)
\(774\) 0 0
\(775\) 5.75961 0.206891
\(776\) 0.946350 1.63913i 0.0339720 0.0588412i
\(777\) 0 0
\(778\) 17.1039 + 29.6249i 0.613206 + 1.06210i
\(779\) −7.96174 13.7901i −0.285259 0.494083i
\(780\) 0 0
\(781\) 2.82894 4.89986i 0.101227 0.175331i
\(782\) 3.52883 0.126191
\(783\) 0 0
\(784\) 16.3913 0.585402
\(785\) 21.6544 37.5065i 0.772878 1.33866i
\(786\) 0 0
\(787\) 26.0812 + 45.1740i 0.929694 + 1.61028i 0.783832 + 0.620973i \(0.213262\pi\)
0.145862 + 0.989305i \(0.453404\pi\)
\(788\) 12.0456 + 20.8635i 0.429106 + 0.743233i
\(789\) 0 0
\(790\) 20.4005 35.3348i 0.725818 1.25715i
\(791\) 33.5161 1.19170
\(792\) 0 0
\(793\) 12.9032 0.458207
\(794\) −21.9137 + 37.9557i −0.777689 + 1.34700i
\(795\) 0 0
\(796\) 21.2338 + 36.7780i 0.752612 + 1.30356i
\(797\) 9.69738 + 16.7964i 0.343499 + 0.594958i 0.985080 0.172098i \(-0.0550545\pi\)
−0.641581 + 0.767055i \(0.721721\pi\)
\(798\) 0 0
\(799\) 2.07464 3.59338i 0.0733955 0.127125i
\(800\) −9.26275 −0.327488
\(801\) 0 0
\(802\) 15.4154 0.544338
\(803\) 0.0217987 0.0377564i 0.000769258 0.00133239i
\(804\) 0 0
\(805\) −3.17614 5.50123i −0.111944 0.193893i
\(806\) −6.36213 11.0195i −0.224097 0.388147i
\(807\) 0 0
\(808\) 2.60097 4.50501i 0.0915018 0.158486i
\(809\) −55.0196 −1.93439 −0.967193 0.254041i \(-0.918240\pi\)
−0.967193 + 0.254041i \(0.918240\pi\)
\(810\) 0 0
\(811\) 20.8406 0.731813 0.365906 0.930652i \(-0.380759\pi\)
0.365906 + 0.930652i \(0.380759\pi\)
\(812\) 7.35397 12.7375i 0.258074 0.446997i
\(813\) 0 0
\(814\) −2.73764 4.74172i −0.0959541 0.166197i
\(815\) 11.6713 + 20.2153i 0.408827 + 0.708109i
\(816\) 0 0
\(817\) −49.8016 + 86.2589i −1.74234 + 3.01782i
\(818\) −37.1644 −1.29942
\(819\) 0 0
\(820\) −7.05561 −0.246392
\(821\) −19.5068 + 33.7868i −0.680793 + 1.17917i 0.293946 + 0.955822i \(0.405031\pi\)
−0.974739 + 0.223346i \(0.928302\pi\)
\(822\) 0 0
\(823\) 20.0081 + 34.6550i 0.697438 + 1.20800i 0.969352 + 0.245677i \(0.0790102\pi\)
−0.271913 + 0.962322i \(0.587656\pi\)
\(824\) −1.38266 2.39484i −0.0481674 0.0834283i
\(825\) 0 0
\(826\) 20.3851 35.3081i 0.709290 1.22853i
\(827\) 16.0203 0.557081 0.278540 0.960424i \(-0.410149\pi\)
0.278540 + 0.960424i \(0.410149\pi\)
\(828\) 0 0
\(829\) 6.90636 0.239868 0.119934 0.992782i \(-0.461732\pi\)
0.119934 + 0.992782i \(0.461732\pi\)
\(830\) 8.00027 13.8569i 0.277693 0.480979i
\(831\) 0 0
\(832\) 4.30313 + 7.45324i 0.149184 + 0.258395i
\(833\) 1.87981 + 3.25592i 0.0651314 + 0.112811i
\(834\) 0 0
\(835\) 11.5198 19.9528i 0.398658 0.690496i
\(836\) 5.55511 0.192127
\(837\) 0 0
\(838\) −17.7485 −0.613112
\(839\) −21.0977 + 36.5423i −0.728374 + 1.26158i 0.229196 + 0.973380i \(0.426390\pi\)
−0.957570 + 0.288200i \(0.906943\pi\)
\(840\) 0 0
\(841\) 4.19899 + 7.27286i 0.144793 + 0.250788i
\(842\) −22.0909 38.2626i −0.761302 1.31861i
\(843\) 0 0
\(844\) 4.51572 7.82145i 0.155437 0.269225i
\(845\) −21.7374 −0.747788
\(846\) 0 0
\(847\) 19.5279 0.670985
\(848\) 4.55285 7.88578i 0.156346 0.270799i
\(849\) 0 0
\(850\) −1.16953 2.02568i −0.0401144 0.0694802i
\(851\) 6.52404 + 11.3000i 0.223641 + 0.387358i
\(852\) 0 0
\(853\) −9.64812 + 16.7110i −0.330345 + 0.572175i −0.982580 0.185843i \(-0.940499\pi\)
0.652234 + 0.758017i \(0.273832\pi\)
\(854\) 33.2975 1.13942
\(855\) 0 0
\(856\) −6.19797 −0.211842
\(857\) 3.97730 6.88888i 0.135862 0.235320i −0.790065 0.613024i \(-0.789953\pi\)
0.925926 + 0.377704i \(0.123286\pi\)
\(858\) 0 0
\(859\) 8.64400 + 14.9719i 0.294930 + 0.510833i 0.974969 0.222343i \(-0.0713705\pi\)
−0.680039 + 0.733176i \(0.738037\pi\)
\(860\) 22.0668 + 38.2208i 0.752472 + 1.30332i
\(861\) 0 0
\(862\) 14.4507 25.0294i 0.492193 0.852503i
\(863\) 54.8726 1.86788 0.933942 0.357425i \(-0.116345\pi\)
0.933942 + 0.357425i \(0.116345\pi\)
\(864\) 0 0
\(865\) 9.84665 0.334796
\(866\) 1.72163 2.98194i 0.0585032 0.101331i
\(867\) 0 0
\(868\) −7.77711 13.4703i −0.263972 0.457213i
\(869\) 2.09189 + 3.62326i 0.0709626 + 0.122911i
\(870\) 0 0
\(871\) 2.46884 4.27616i 0.0836534 0.144892i
\(872\) −2.81225 −0.0952347
\(873\) 0 0
\(874\) −27.9467 −0.945312
\(875\) −10.8780 + 18.8413i −0.367745 + 0.636953i
\(876\) 0 0
\(877\) 9.89319 + 17.1355i 0.334069 + 0.578625i 0.983306 0.181962i \(-0.0582447\pi\)
−0.649236 + 0.760587i \(0.724911\pi\)
\(878\) 0.812787 + 1.40779i 0.0274302 + 0.0475105i
\(879\) 0 0
\(880\) −1.65589 + 2.86808i −0.0558200 + 0.0966830i
\(881\) 23.1023 0.778336 0.389168 0.921167i \(-0.372763\pi\)
0.389168 + 0.921167i \(0.372763\pi\)
\(882\) 0 0
\(883\) −57.1266 −1.92246 −0.961231 0.275745i \(-0.911076\pi\)
−0.961231 + 0.275745i \(0.911076\pi\)
\(884\) −1.22392 + 2.11989i −0.0411648 + 0.0712996i
\(885\) 0 0
\(886\) 21.9054 + 37.9413i 0.735926 + 1.27466i
\(887\) −10.2591 17.7694i −0.344468 0.596636i 0.640789 0.767717i \(-0.278607\pi\)
−0.985257 + 0.171081i \(0.945274\pi\)
\(888\) 0 0
\(889\) −14.7766 + 25.5939i −0.495592 + 0.858390i
\(890\) −8.29666 −0.278105
\(891\) 0 0
\(892\) 32.4422 1.08625
\(893\) −16.4302 + 28.4579i −0.549816 + 0.952309i
\(894\) 0 0
\(895\) 1.60708 + 2.78355i 0.0537188 + 0.0930437i
\(896\) −2.79176 4.83546i −0.0932661 0.161542i
\(897\) 0 0
\(898\) 22.8930 39.6518i 0.763948 1.32320i
\(899\) −21.7874 −0.726651
\(900\) 0 0
\(901\) 2.08855 0.0695796
\(902\) 0.763659 1.32270i 0.0254271 0.0440410i
\(903\) 0 0
\(904\) 3.62760 + 6.28319i 0.120652 + 0.208976i
\(905\) −8.65435 14.9898i −0.287680 0.498277i
\(906\) 0 0
\(907\) −18.6947 + 32.3801i −0.620746 + 1.07516i 0.368601 + 0.929588i \(0.379837\pi\)
−0.989347 + 0.145576i \(0.953497\pi\)
\(908\) 31.6604 1.05069
\(909\) 0 0
\(910\) 9.30204 0.308360
\(911\) −12.6231 + 21.8639i −0.418223 + 0.724383i −0.995761 0.0919807i \(-0.970680\pi\)
0.577538 + 0.816364i \(0.304014\pi\)
\(912\) 0 0
\(913\) 0.820356 + 1.42090i 0.0271498 + 0.0470249i
\(914\) 12.8047 + 22.1784i 0.423541 + 0.733595i
\(915\) 0 0
\(916\) −0.777107 + 1.34599i −0.0256763 + 0.0444727i
\(917\) −6.28685 −0.207610
\(918\) 0 0
\(919\) 26.0729 0.860065 0.430032 0.902813i \(-0.358502\pi\)
0.430032 + 0.902813i \(0.358502\pi\)
\(920\) 0.687534 1.19084i 0.0226673 0.0392610i
\(921\) 0 0
\(922\) −14.5321 25.1704i −0.478590 0.828942i
\(923\) −9.87219 17.0991i −0.324947 0.562825i
\(924\) 0 0
\(925\) 4.32440 7.49009i 0.142186 0.246273i
\(926\) 64.2064 2.10995
\(927\) 0 0
\(928\) 35.0391 1.15021
\(929\) −6.47773 + 11.2198i −0.212527 + 0.368108i −0.952505 0.304523i \(-0.901503\pi\)
0.739977 + 0.672632i \(0.234836\pi\)
\(930\) 0 0
\(931\) −14.8872 25.7854i −0.487909 0.845083i
\(932\) −14.9633 25.9173i −0.490140 0.848948i
\(933\) 0 0
\(934\) −20.7650 + 35.9660i −0.679450 + 1.17684i
\(935\) −0.759612 −0.0248420
\(936\) 0 0
\(937\) 42.1013 1.37539 0.687695 0.726000i \(-0.258623\pi\)
0.687695 + 0.726000i \(0.258623\pi\)
\(938\) 6.37097 11.0348i 0.208020 0.360300i
\(939\) 0 0
\(940\) 7.28013 + 12.6096i 0.237452 + 0.411278i
\(941\) 19.7050 + 34.1301i 0.642365 + 1.11261i 0.984903 + 0.173105i \(0.0553799\pi\)
−0.342539 + 0.939504i \(0.611287\pi\)
\(942\) 0 0
\(943\) −1.81987 + 3.15211i −0.0592631 + 0.102647i
\(944\) 50.6543 1.64866
\(945\) 0 0
\(946\) −9.55354 −0.310613
\(947\) 5.38902 9.33405i 0.175120 0.303316i −0.765083 0.643932i \(-0.777302\pi\)
0.940203 + 0.340616i \(0.110635\pi\)
\(948\) 0 0
\(949\) −0.0760711 0.131759i −0.00246937 0.00427708i
\(950\) 9.26212 + 16.0425i 0.300503 + 0.520486i
\(951\) 0 0
\(952\) 0.350721 0.607467i 0.0113669 0.0196881i
\(953\) −18.9985 −0.615421 −0.307711 0.951480i \(-0.599563\pi\)
−0.307711 + 0.951480i \(0.599563\pi\)
\(954\) 0 0
\(955\) 22.8659 0.739922
\(956\) −14.9033 + 25.8133i −0.482007 + 0.834861i
\(957\) 0 0
\(958\) −11.9202 20.6465i −0.385125 0.667057i
\(959\) −16.7029 28.9303i −0.539366 0.934209i
\(960\) 0 0
\(961\) 3.97948 6.89267i 0.128370 0.222344i
\(962\) −19.1071 −0.616039
\(963\) 0 0
\(964\) 25.4217 0.818778
\(965\) 5.37955 9.31765i 0.173174 0.299946i
\(966\) 0 0
\(967\) 4.10735 + 7.11414i 0.132083 + 0.228775i 0.924480 0.381232i \(-0.124500\pi\)
−0.792396 + 0.610007i \(0.791167\pi\)
\(968\) 2.11359 + 3.66084i 0.0679332 + 0.117664i
\(969\) 0 0
\(970\) −9.22899 + 15.9851i −0.296325 + 0.513250i
\(971\) −10.0253 −0.321726 −0.160863 0.986977i \(-0.551428\pi\)
−0.160863 + 0.986977i \(0.551428\pi\)
\(972\) 0 0
\(973\) −17.5263 −0.561869
\(974\) 1.92769 3.33886i 0.0617673 0.106984i
\(975\) 0 0
\(976\) 20.6849 + 35.8273i 0.662108 + 1.14681i
\(977\) 20.3751 + 35.2907i 0.651857 + 1.12905i 0.982672 + 0.185354i \(0.0593432\pi\)
−0.330815 + 0.943696i \(0.607324\pi\)
\(978\) 0 0
\(979\) 0.425374 0.736770i 0.0135950 0.0235473i
\(980\) −13.1929 −0.421431
\(981\) 0 0
\(982\) −33.0511 −1.05470
\(983\) 1.42616 2.47017i 0.0454873 0.0787863i −0.842385 0.538876i \(-0.818849\pi\)
0.887873 + 0.460089i \(0.152183\pi\)
\(984\) 0 0
\(985\) 13.0445 + 22.5937i 0.415632 + 0.719895i
\(986\) 4.42408 + 7.66273i 0.140891 + 0.244031i
\(987\) 0 0
\(988\) 9.69288 16.7886i 0.308371 0.534115i
\(989\) 22.7670 0.723948
\(990\) 0 0
\(991\) −30.4975 −0.968785 −0.484393 0.874851i \(-0.660959\pi\)
−0.484393 + 0.874851i \(0.660959\pi\)
\(992\) 18.5276 32.0907i 0.588252 1.01888i
\(993\) 0 0
\(994\) −25.4757 44.1252i −0.808040 1.39957i
\(995\) 22.9947 + 39.8279i 0.728980 + 1.26263i
\(996\) 0 0
\(997\) −6.62706 + 11.4784i −0.209881 + 0.363525i −0.951677 0.307101i \(-0.900641\pi\)
0.741796 + 0.670626i \(0.233974\pi\)
\(998\) 43.1241 1.36507
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 459.2.e.b.154.4 8
3.2 odd 2 153.2.e.b.52.1 8
9.2 odd 6 1377.2.a.e.1.4 4
9.4 even 3 inner 459.2.e.b.307.4 8
9.5 odd 6 153.2.e.b.103.1 yes 8
9.7 even 3 1377.2.a.f.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
153.2.e.b.52.1 8 3.2 odd 2
153.2.e.b.103.1 yes 8 9.5 odd 6
459.2.e.b.154.4 8 1.1 even 1 trivial
459.2.e.b.307.4 8 9.4 even 3 inner
1377.2.a.e.1.4 4 9.2 odd 6
1377.2.a.f.1.1 4 9.7 even 3