Properties

Label 2-456-1.1-c3-0-1
Degree $2$
Conductor $456$
Sign $1$
Analytic cond. $26.9048$
Root an. cond. $5.18699$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 4.10·5-s − 28.9·7-s + 9·9-s + 20.5·11-s − 64.4·13-s + 12.3·15-s − 41.9·17-s + 19·19-s + 86.7·21-s + 82.4·23-s − 108.·25-s − 27·27-s + 23.6·29-s + 200.·31-s − 61.5·33-s + 118.·35-s − 189.·37-s + 193.·39-s + 438.·41-s + 406.·43-s − 36.9·45-s − 272.·47-s + 493.·49-s + 125.·51-s − 183.·53-s − 84.1·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.367·5-s − 1.56·7-s + 0.333·9-s + 0.562·11-s − 1.37·13-s + 0.211·15-s − 0.597·17-s + 0.229·19-s + 0.901·21-s + 0.747·23-s − 0.865·25-s − 0.192·27-s + 0.151·29-s + 1.16·31-s − 0.324·33-s + 0.573·35-s − 0.840·37-s + 0.793·39-s + 1.67·41-s + 1.44·43-s − 0.122·45-s − 0.845·47-s + 1.43·49-s + 0.345·51-s − 0.476·53-s − 0.206·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 456 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 456 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(456\)    =    \(2^{3} \cdot 3 \cdot 19\)
Sign: $1$
Analytic conductor: \(26.9048\)
Root analytic conductor: \(5.18699\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 456,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.8013035647\)
\(L(\frac12)\) \(\approx\) \(0.8013035647\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 3T \)
19 \( 1 - 19T \)
good5 \( 1 + 4.10T + 125T^{2} \)
7 \( 1 + 28.9T + 343T^{2} \)
11 \( 1 - 20.5T + 1.33e3T^{2} \)
13 \( 1 + 64.4T + 2.19e3T^{2} \)
17 \( 1 + 41.9T + 4.91e3T^{2} \)
23 \( 1 - 82.4T + 1.21e4T^{2} \)
29 \( 1 - 23.6T + 2.43e4T^{2} \)
31 \( 1 - 200.T + 2.97e4T^{2} \)
37 \( 1 + 189.T + 5.06e4T^{2} \)
41 \( 1 - 438.T + 6.89e4T^{2} \)
43 \( 1 - 406.T + 7.95e4T^{2} \)
47 \( 1 + 272.T + 1.03e5T^{2} \)
53 \( 1 + 183.T + 1.48e5T^{2} \)
59 \( 1 + 57.0T + 2.05e5T^{2} \)
61 \( 1 - 304.T + 2.26e5T^{2} \)
67 \( 1 - 523.T + 3.00e5T^{2} \)
71 \( 1 + 527.T + 3.57e5T^{2} \)
73 \( 1 - 104.T + 3.89e5T^{2} \)
79 \( 1 - 837.T + 4.93e5T^{2} \)
83 \( 1 - 1.29e3T + 5.71e5T^{2} \)
89 \( 1 - 1.20e3T + 7.04e5T^{2} \)
97 \( 1 + 626.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.61416281262908471672473527913, −9.697818945830367701482711537409, −9.177836555128775955404209342067, −7.69381929371229379282025852675, −6.82127173528814191846540155993, −6.12976989297491241427315245431, −4.87565234948530334402602056998, −3.78030753124890285977706663961, −2.56273103515264356670476290436, −0.55883155087367316270460399752, 0.55883155087367316270460399752, 2.56273103515264356670476290436, 3.78030753124890285977706663961, 4.87565234948530334402602056998, 6.12976989297491241427315245431, 6.82127173528814191846540155993, 7.69381929371229379282025852675, 9.177836555128775955404209342067, 9.697818945830367701482711537409, 10.61416281262908471672473527913

Graph of the $Z$-function along the critical line