Properties

Label 456.4.a.c
Level $456$
Weight $4$
Character orbit 456.a
Self dual yes
Analytic conductor $26.905$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [456,4,Mod(1,456)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("456.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(456, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 456 = 2^{3} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 456.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-9,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.9048709626\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.24665.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 30x + 32 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 3 q^{3} + \beta_1 q^{5} + ( - 3 \beta_{2} + 2 \beta_1 + 3) q^{7} + 9 q^{9} + (3 \beta_{2} + 2 \beta_1 + 5) q^{11} + ( - 7 \beta_{2} + \beta_1 - 5) q^{13} - 3 \beta_1 q^{15} + (3 \beta_{2} + 6 \beta_1 - 41) q^{17}+ \cdots + (27 \beta_{2} + 18 \beta_1 + 45) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 9 q^{3} - q^{5} + 7 q^{7} + 27 q^{9} + 13 q^{11} - 16 q^{13} + 3 q^{15} - 129 q^{17} + 57 q^{19} - 21 q^{21} + 70 q^{23} - 138 q^{25} - 81 q^{27} + 30 q^{29} + 360 q^{31} - 39 q^{33} + 231 q^{35}+ \cdots + 117 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 30x + 32 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{2} + 3\nu - 22 ) / 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} - \nu - 20 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{2} + \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 3\beta_{2} + \beta _1 + 41 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.06931
−5.50522
5.43591
0 −3.00000 0 −8.82433 0 15.2402 0 9.00000 0
1.2 0 −3.00000 0 −4.10411 0 −28.9272 0 9.00000 0
1.3 0 −3.00000 0 11.9284 0 20.6870 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 456.4.a.c 3
3.b odd 2 1 1368.4.a.f 3
4.b odd 2 1 912.4.a.q 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
456.4.a.c 3 1.a even 1 1 trivial
912.4.a.q 3 4.b odd 2 1
1368.4.a.f 3 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{3} + T_{5}^{2} - 118T_{5} - 432 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(456))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( (T + 3)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} + T^{2} + \cdots - 432 \) Copy content Toggle raw display
$7$ \( T^{3} - 7 T^{2} + \cdots + 9120 \) Copy content Toggle raw display
$11$ \( T^{3} - 13 T^{2} + \cdots + 30560 \) Copy content Toggle raw display
$13$ \( T^{3} + 16 T^{2} + \cdots - 26912 \) Copy content Toggle raw display
$17$ \( T^{3} + 129 T^{2} + \cdots - 190660 \) Copy content Toggle raw display
$19$ \( (T - 19)^{3} \) Copy content Toggle raw display
$23$ \( T^{3} - 70 T^{2} + \cdots + 79616 \) Copy content Toggle raw display
$29$ \( T^{3} - 30 T^{2} + \cdots + 521112 \) Copy content Toggle raw display
$31$ \( T^{3} - 360 T^{2} + \cdots + 2515664 \) Copy content Toggle raw display
$37$ \( T^{3} - 82 T^{2} + \cdots + 1647616 \) Copy content Toggle raw display
$41$ \( T^{3} - 312 T^{2} + \cdots + 7214848 \) Copy content Toggle raw display
$43$ \( T^{3} - 719 T^{2} + \cdots + 3201808 \) Copy content Toggle raw display
$47$ \( T^{3} - 509 T^{2} + \cdots + 41595104 \) Copy content Toggle raw display
$53$ \( T^{3} - 158 T^{2} + \cdots + 2414232 \) Copy content Toggle raw display
$59$ \( T^{3} - 868 T^{2} + \cdots + 10799424 \) Copy content Toggle raw display
$61$ \( T^{3} - 699 T^{2} + \cdots - 10964780 \) Copy content Toggle raw display
$67$ \( T^{3} - 1752 T^{2} + \cdots - 94591232 \) Copy content Toggle raw display
$71$ \( T^{3} - 568 T^{2} + \cdots + 138092544 \) Copy content Toggle raw display
$73$ \( T^{3} - 109 T^{2} + \cdots + 16358724 \) Copy content Toggle raw display
$79$ \( T^{3} - 1350 T^{2} + \cdots - 54761312 \) Copy content Toggle raw display
$83$ \( T^{3} - 1748 T^{2} + \cdots + 280742912 \) Copy content Toggle raw display
$89$ \( T^{3} + 90 T^{2} + \cdots + 554449752 \) Copy content Toggle raw display
$97$ \( T^{3} + 1302 T^{2} + \cdots + 31987304 \) Copy content Toggle raw display
show more
show less