Properties

Label 2-456-57.32-c1-0-6
Degree $2$
Conductor $456$
Sign $0.999 - 0.00473i$
Analytic cond. $3.64117$
Root an. cond. $1.90818$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.55 − 0.771i)3-s + (−3.00 + 0.529i)5-s + (−0.251 + 0.435i)7-s + (1.80 + 2.39i)9-s + (2.58 − 1.49i)11-s + (0.364 + 1.00i)13-s + (5.06 + 1.49i)15-s + (0.866 + 1.03i)17-s + (1.71 − 4.00i)19-s + (0.725 − 0.480i)21-s + (8.83 + 1.55i)23-s + (4.03 − 1.46i)25-s + (−0.956 − 5.10i)27-s + (3.43 + 2.88i)29-s + (3.58 + 2.06i)31-s + ⋯
L(s)  = 1  + (−0.895 − 0.445i)3-s + (−1.34 + 0.236i)5-s + (−0.0949 + 0.164i)7-s + (0.602 + 0.797i)9-s + (0.779 − 0.450i)11-s + (0.101 + 0.277i)13-s + (1.30 + 0.386i)15-s + (0.210 + 0.250i)17-s + (0.394 − 0.918i)19-s + (0.158 − 0.104i)21-s + (1.84 + 0.324i)23-s + (0.807 − 0.293i)25-s + (−0.184 − 0.982i)27-s + (0.638 + 0.535i)29-s + (0.643 + 0.371i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 456 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.00473i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 456 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 - 0.00473i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(456\)    =    \(2^{3} \cdot 3 \cdot 19\)
Sign: $0.999 - 0.00473i$
Analytic conductor: \(3.64117\)
Root analytic conductor: \(1.90818\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{456} (89, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 456,\ (\ :1/2),\ 0.999 - 0.00473i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.836301 + 0.00197914i\)
\(L(\frac12)\) \(\approx\) \(0.836301 + 0.00197914i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (1.55 + 0.771i)T \)
19 \( 1 + (-1.71 + 4.00i)T \)
good5 \( 1 + (3.00 - 0.529i)T + (4.69 - 1.71i)T^{2} \)
7 \( 1 + (0.251 - 0.435i)T + (-3.5 - 6.06i)T^{2} \)
11 \( 1 + (-2.58 + 1.49i)T + (5.5 - 9.52i)T^{2} \)
13 \( 1 + (-0.364 - 1.00i)T + (-9.95 + 8.35i)T^{2} \)
17 \( 1 + (-0.866 - 1.03i)T + (-2.95 + 16.7i)T^{2} \)
23 \( 1 + (-8.83 - 1.55i)T + (21.6 + 7.86i)T^{2} \)
29 \( 1 + (-3.43 - 2.88i)T + (5.03 + 28.5i)T^{2} \)
31 \( 1 + (-3.58 - 2.06i)T + (15.5 + 26.8i)T^{2} \)
37 \( 1 - 1.40iT - 37T^{2} \)
41 \( 1 + (4.19 + 1.52i)T + (31.4 + 26.3i)T^{2} \)
43 \( 1 + (0.539 + 3.05i)T + (-40.4 + 14.7i)T^{2} \)
47 \( 1 + (-1.56 + 1.86i)T + (-8.16 - 46.2i)T^{2} \)
53 \( 1 + (1.97 - 11.2i)T + (-49.8 - 18.1i)T^{2} \)
59 \( 1 + (-8.56 + 7.18i)T + (10.2 - 58.1i)T^{2} \)
61 \( 1 + (-1.52 + 8.62i)T + (-57.3 - 20.8i)T^{2} \)
67 \( 1 + (6.94 - 8.27i)T + (-11.6 - 65.9i)T^{2} \)
71 \( 1 + (-2.02 - 11.5i)T + (-66.7 + 24.2i)T^{2} \)
73 \( 1 + (-9.45 - 3.44i)T + (55.9 + 46.9i)T^{2} \)
79 \( 1 + (-0.310 + 0.852i)T + (-60.5 - 50.7i)T^{2} \)
83 \( 1 + (6.19 + 3.57i)T + (41.5 + 71.8i)T^{2} \)
89 \( 1 + (-13.7 + 5.00i)T + (68.1 - 57.2i)T^{2} \)
97 \( 1 + (9.45 + 11.2i)T + (-16.8 + 95.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.29887192372025359421585834419, −10.55128452379296280497275726731, −9.165294448288408729929365089362, −8.238808435396833195091503011755, −7.13437339652507560375549851340, −6.68717947053761839681453768737, −5.34852321209995733980199166713, −4.32367546686602107048984966765, −3.10926711755812127458411218935, −0.985683325493321540298024457296, 0.862891176223548527454347426713, 3.41507469829268515362349280438, 4.28860684883810916441594175450, 5.16015123189303032533015332875, 6.47132738320226085840895835164, 7.29858289668807794525412604992, 8.314341288092900932130843844535, 9.398813771211572193975985553993, 10.29353934881577010252361287265, 11.22179629277665180478223575834

Graph of the $Z$-function along the critical line