L(s) = 1 | + (1.5 + 0.866i)3-s + (−1.5 + 0.866i)5-s + 7·7-s + (−3 − 5.19i)9-s + (−7.5 + 12.9i)11-s + 13.8i·13-s − 3·15-s + (25.5 + 14.7i)17-s + (13.5 − 7.79i)19-s + (10.5 + 6.06i)21-s + (−4.5 − 7.79i)23-s + (−11 + 19.0i)25-s − 25.9i·27-s + 6·29-s + (10.5 + 6.06i)31-s + ⋯ |
L(s) = 1 | + (0.5 + 0.288i)3-s + (−0.300 + 0.173i)5-s + 7-s + (−0.333 − 0.577i)9-s + (−0.681 + 1.18i)11-s + 1.06i·13-s − 0.200·15-s + (1.5 + 0.866i)17-s + (0.710 − 0.410i)19-s + (0.5 + 0.288i)21-s + (−0.195 − 0.338i)23-s + (−0.440 + 0.762i)25-s − 0.962i·27-s + 0.206·29-s + (0.338 + 0.195i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.386 - 0.922i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.386 - 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.984303901\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.984303901\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 - 7T \) |
good | 3 | \( 1 + (-1.5 - 0.866i)T + (4.5 + 7.79i)T^{2} \) |
| 5 | \( 1 + (1.5 - 0.866i)T + (12.5 - 21.6i)T^{2} \) |
| 11 | \( 1 + (7.5 - 12.9i)T + (-60.5 - 104. i)T^{2} \) |
| 13 | \( 1 - 13.8iT - 169T^{2} \) |
| 17 | \( 1 + (-25.5 - 14.7i)T + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (-13.5 + 7.79i)T + (180.5 - 312. i)T^{2} \) |
| 23 | \( 1 + (4.5 + 7.79i)T + (-264.5 + 458. i)T^{2} \) |
| 29 | \( 1 - 6T + 841T^{2} \) |
| 31 | \( 1 + (-10.5 - 6.06i)T + (480.5 + 832. i)T^{2} \) |
| 37 | \( 1 + (-15.5 - 26.8i)T + (-684.5 + 1.18e3i)T^{2} \) |
| 41 | \( 1 - 55.4iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 10T + 1.84e3T^{2} \) |
| 47 | \( 1 + (37.5 - 21.6i)T + (1.10e3 - 1.91e3i)T^{2} \) |
| 53 | \( 1 + (28.5 - 49.3i)T + (-1.40e3 - 2.43e3i)T^{2} \) |
| 59 | \( 1 + (70.5 + 40.7i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-70.5 + 40.7i)T + (1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-24.5 + 42.4i)T + (-2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 - 126T + 5.04e3T^{2} \) |
| 73 | \( 1 + (22.5 + 12.9i)T + (2.66e3 + 4.61e3i)T^{2} \) |
| 79 | \( 1 + (36.5 + 63.2i)T + (-3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 - 13.8iT - 6.88e3T^{2} \) |
| 89 | \( 1 + (-49.5 + 28.5i)T + (3.96e3 - 6.85e3i)T^{2} \) |
| 97 | \( 1 + 27.7iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.13338130963706013132790806456, −9.969703026674376856676546957336, −9.382225134735112175135703472764, −8.155265783377731902339497631819, −7.67322942601452459371382462006, −6.44901398063113813030363657591, −5.12353264862754785970100621622, −4.20852085167624355916021796828, −3.02089886844481648966174950469, −1.58432754758495148290724390051,
0.845818008918471279983993120345, 2.52008020042059822408657505009, 3.54863778730955824575379814747, 5.21216995535126696558136508088, 5.63050702616825810646137342573, 7.52426191824515905999274677145, 7.974443942756281680692180286974, 8.522141782174098334965168724422, 9.886149592127492150780898862990, 10.79109388383812756510635553932