Properties

Label 448.3.s.b
Level $448$
Weight $3$
Character orbit 448.s
Analytic conductor $12.207$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [448,3,Mod(129,448)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(448, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("448.129"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 448.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,3,0,-3,0,14,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.2071158433\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{6} + 1) q^{3} + (\zeta_{6} - 2) q^{5} + 7 q^{7} - 6 \zeta_{6} q^{9} + (15 \zeta_{6} - 15) q^{11} + (16 \zeta_{6} - 8) q^{13} - 3 q^{15} + (17 \zeta_{6} + 17) q^{17} + ( - 9 \zeta_{6} + 18) q^{19} + \cdots + 90 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{3} - 3 q^{5} + 14 q^{7} - 6 q^{9} - 15 q^{11} - 6 q^{15} + 51 q^{17} + 27 q^{19} + 21 q^{21} - 9 q^{23} - 22 q^{25} + 12 q^{29} + 21 q^{31} - 45 q^{33} - 21 q^{35} + 31 q^{37} - 24 q^{39} + 20 q^{43}+ \cdots + 180 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(1\) \(\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
129.1
0.500000 + 0.866025i
0.500000 0.866025i
0 1.50000 + 0.866025i 0 −1.50000 + 0.866025i 0 7.00000 0 −3.00000 5.19615i 0
257.1 0 1.50000 0.866025i 0 −1.50000 0.866025i 0 7.00000 0 −3.00000 + 5.19615i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 448.3.s.b 2
4.b odd 2 1 448.3.s.a 2
7.d odd 6 1 inner 448.3.s.b 2
8.b even 2 1 112.3.s.a 2
8.d odd 2 1 28.3.h.a 2
24.f even 2 1 252.3.z.a 2
24.h odd 2 1 1008.3.cg.c 2
28.f even 6 1 448.3.s.a 2
40.e odd 2 1 700.3.s.a 2
40.k even 4 2 700.3.o.a 4
56.e even 2 1 196.3.h.a 2
56.h odd 2 1 784.3.s.b 2
56.j odd 6 1 112.3.s.a 2
56.j odd 6 1 784.3.c.a 2
56.k odd 6 1 196.3.b.a 2
56.k odd 6 1 196.3.h.a 2
56.m even 6 1 28.3.h.a 2
56.m even 6 1 196.3.b.a 2
56.p even 6 1 784.3.c.a 2
56.p even 6 1 784.3.s.b 2
168.e odd 2 1 1764.3.z.f 2
168.v even 6 1 1764.3.d.a 2
168.v even 6 1 1764.3.z.f 2
168.ba even 6 1 1008.3.cg.c 2
168.be odd 6 1 252.3.z.a 2
168.be odd 6 1 1764.3.d.a 2
280.ba even 6 1 700.3.s.a 2
280.bp odd 12 2 700.3.o.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
28.3.h.a 2 8.d odd 2 1
28.3.h.a 2 56.m even 6 1
112.3.s.a 2 8.b even 2 1
112.3.s.a 2 56.j odd 6 1
196.3.b.a 2 56.k odd 6 1
196.3.b.a 2 56.m even 6 1
196.3.h.a 2 56.e even 2 1
196.3.h.a 2 56.k odd 6 1
252.3.z.a 2 24.f even 2 1
252.3.z.a 2 168.be odd 6 1
448.3.s.a 2 4.b odd 2 1
448.3.s.a 2 28.f even 6 1
448.3.s.b 2 1.a even 1 1 trivial
448.3.s.b 2 7.d odd 6 1 inner
700.3.o.a 4 40.k even 4 2
700.3.o.a 4 280.bp odd 12 2
700.3.s.a 2 40.e odd 2 1
700.3.s.a 2 280.ba even 6 1
784.3.c.a 2 56.j odd 6 1
784.3.c.a 2 56.p even 6 1
784.3.s.b 2 56.h odd 2 1
784.3.s.b 2 56.p even 6 1
1008.3.cg.c 2 24.h odd 2 1
1008.3.cg.c 2 168.ba even 6 1
1764.3.d.a 2 168.v even 6 1
1764.3.d.a 2 168.be odd 6 1
1764.3.z.f 2 168.e odd 2 1
1764.3.z.f 2 168.v even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 3T_{3} + 3 \) acting on \(S_{3}^{\mathrm{new}}(448, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 3T + 3 \) Copy content Toggle raw display
$5$ \( T^{2} + 3T + 3 \) Copy content Toggle raw display
$7$ \( (T - 7)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 15T + 225 \) Copy content Toggle raw display
$13$ \( T^{2} + 192 \) Copy content Toggle raw display
$17$ \( T^{2} - 51T + 867 \) Copy content Toggle raw display
$19$ \( T^{2} - 27T + 243 \) Copy content Toggle raw display
$23$ \( T^{2} + 9T + 81 \) Copy content Toggle raw display
$29$ \( (T - 6)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 21T + 147 \) Copy content Toggle raw display
$37$ \( T^{2} - 31T + 961 \) Copy content Toggle raw display
$41$ \( T^{2} + 3072 \) Copy content Toggle raw display
$43$ \( (T - 10)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 75T + 1875 \) Copy content Toggle raw display
$53$ \( T^{2} + 57T + 3249 \) Copy content Toggle raw display
$59$ \( T^{2} + 141T + 6627 \) Copy content Toggle raw display
$61$ \( T^{2} - 141T + 6627 \) Copy content Toggle raw display
$67$ \( T^{2} - 49T + 2401 \) Copy content Toggle raw display
$71$ \( (T - 126)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 45T + 675 \) Copy content Toggle raw display
$79$ \( T^{2} + 73T + 5329 \) Copy content Toggle raw display
$83$ \( T^{2} + 192 \) Copy content Toggle raw display
$89$ \( T^{2} - 99T + 3267 \) Copy content Toggle raw display
$97$ \( T^{2} + 768 \) Copy content Toggle raw display
show more
show less