Properties

Label 2-448-112.59-c1-0-12
Degree $2$
Conductor $448$
Sign $-0.739 + 0.672i$
Analytic cond. $3.57729$
Root an. cond. $1.89137$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.449 − 1.67i)3-s + (0.731 + 0.195i)5-s + (−2.52 + 0.800i)7-s + (−0.0183 + 0.0105i)9-s + (−1.18 − 4.42i)11-s + (−2.89 − 2.89i)13-s − 1.31i·15-s + (−2.28 − 1.31i)17-s + (5.38 + 1.44i)19-s + (2.47 + 3.87i)21-s + (−1.01 − 1.75i)23-s + (−3.83 − 2.21i)25-s + (−3.66 − 3.66i)27-s + (−0.209 + 0.209i)29-s + (−3.33 + 5.76i)31-s + ⋯
L(s)  = 1  + (−0.259 − 0.969i)3-s + (0.326 + 0.0875i)5-s + (−0.953 + 0.302i)7-s + (−0.00611 + 0.00353i)9-s + (−0.357 − 1.33i)11-s + (−0.803 − 0.803i)13-s − 0.339i·15-s + (−0.554 − 0.319i)17-s + (1.23 + 0.330i)19-s + (0.540 + 0.845i)21-s + (−0.210 − 0.365i)23-s + (−0.766 − 0.442i)25-s + (−0.704 − 0.704i)27-s + (−0.0389 + 0.0389i)29-s + (−0.598 + 1.03i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.739 + 0.672i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.739 + 0.672i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(448\)    =    \(2^{6} \cdot 7\)
Sign: $-0.739 + 0.672i$
Analytic conductor: \(3.57729\)
Root analytic conductor: \(1.89137\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{448} (143, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 448,\ (\ :1/2),\ -0.739 + 0.672i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.324938 - 0.840409i\)
\(L(\frac12)\) \(\approx\) \(0.324938 - 0.840409i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + (2.52 - 0.800i)T \)
good3 \( 1 + (0.449 + 1.67i)T + (-2.59 + 1.5i)T^{2} \)
5 \( 1 + (-0.731 - 0.195i)T + (4.33 + 2.5i)T^{2} \)
11 \( 1 + (1.18 + 4.42i)T + (-9.52 + 5.5i)T^{2} \)
13 \( 1 + (2.89 + 2.89i)T + 13iT^{2} \)
17 \( 1 + (2.28 + 1.31i)T + (8.5 + 14.7i)T^{2} \)
19 \( 1 + (-5.38 - 1.44i)T + (16.4 + 9.5i)T^{2} \)
23 \( 1 + (1.01 + 1.75i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (0.209 - 0.209i)T - 29iT^{2} \)
31 \( 1 + (3.33 - 5.76i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + (-1.02 + 3.82i)T + (-32.0 - 18.5i)T^{2} \)
41 \( 1 + 5.04T + 41T^{2} \)
43 \( 1 + (-3.79 + 3.79i)T - 43iT^{2} \)
47 \( 1 + (-2.53 - 4.39i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + (-10.7 + 2.87i)T + (45.8 - 26.5i)T^{2} \)
59 \( 1 + (-5.23 + 1.40i)T + (51.0 - 29.5i)T^{2} \)
61 \( 1 + (1.56 - 5.84i)T + (-52.8 - 30.5i)T^{2} \)
67 \( 1 + (9.24 - 2.47i)T + (58.0 - 33.5i)T^{2} \)
71 \( 1 - 7.25T + 71T^{2} \)
73 \( 1 + (-3.29 + 5.70i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (-13.0 + 7.54i)T + (39.5 - 68.4i)T^{2} \)
83 \( 1 + (-8.00 + 8.00i)T - 83iT^{2} \)
89 \( 1 + (-3.92 - 6.79i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 - 8.79iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.72523126527730998766546482470, −9.892009473725889325882476505520, −8.954192943966840195411419561774, −7.82456927016990231861241323962, −7.00534931474256764169459113432, −6.05267152899354955142828586549, −5.38955000190444312289921877399, −3.51143488428732201870873244840, −2.40384276136671268985026127546, −0.55855915757837480912561132364, 2.16582940011033050433589062024, 3.76024470794458480840564081428, 4.64475152855554054125402119202, 5.57148395986465933358317318301, 6.89316504724996210019882323842, 7.56833244605787819581721819719, 9.323002553141412789289061066399, 9.660730196591650028948706829895, 10.24252173969870576347373366621, 11.33673934796822222414495007935

Graph of the $Z$-function along the critical line