Properties

Label 448.2.z.a.143.4
Level $448$
Weight $2$
Character 448.143
Analytic conductor $3.577$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [448,2,Mod(47,448)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("448.47"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(448, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 10])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 448.z (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.57729801055\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 143.4
Character \(\chi\) \(=\) 448.143
Dual form 448.2.z.a.47.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.449868 - 1.67893i) q^{3} +(0.731029 + 0.195879i) q^{5} +(-2.52163 + 0.800849i) q^{7} +(-0.0183525 + 0.0105958i) q^{9} +(-1.18531 - 4.42364i) q^{11} +(-2.89529 - 2.89529i) q^{13} -1.31547i q^{15} +(-2.28427 - 1.31882i) q^{17} +(5.38016 + 1.44161i) q^{19} +(2.47897 + 3.87337i) q^{21} +(-1.01143 - 1.75184i) q^{23} +(-3.83409 - 2.21361i) q^{25} +(-3.66114 - 3.66114i) q^{27} +(-0.209526 + 0.209526i) q^{29} +(-3.33052 + 5.76864i) q^{31} +(-6.89376 + 3.98011i) q^{33} +(-2.00026 + 0.0915096i) q^{35} +(1.02406 - 3.82183i) q^{37} +(-3.55850 + 6.16350i) q^{39} -5.04472 q^{41} +(3.79454 - 3.79454i) q^{43} +(-0.0154917 + 0.00415099i) q^{45} +(2.53993 + 4.39928i) q^{47} +(5.71728 - 4.03890i) q^{49} +(-1.18659 + 4.42843i) q^{51} +(10.7333 - 2.87599i) q^{53} -3.46599i q^{55} -9.68145i q^{57} +(5.23198 - 1.40190i) q^{59} +(-1.56694 + 5.84791i) q^{61} +(0.0377926 - 0.0414163i) q^{63} +(-1.54942 - 2.68367i) q^{65} +(-9.24005 + 2.47586i) q^{67} +(-2.48621 + 2.48621i) q^{69} +7.25507 q^{71} +(3.29633 - 5.70940i) q^{73} +(-1.99167 + 7.43301i) q^{75} +(6.53159 + 10.2056i) q^{77} +(13.0615 - 7.54108i) q^{79} +(-4.53156 + 7.84890i) q^{81} +(8.00548 - 8.00548i) q^{83} +(-1.41154 - 1.41154i) q^{85} +(0.446039 + 0.257521i) q^{87} +(3.92536 + 6.79892i) q^{89} +(9.61956 + 4.98218i) q^{91} +(11.1834 + 2.99659i) q^{93} +(3.65067 + 2.10772i) q^{95} +8.79532i q^{97} +(0.0686254 + 0.0686254i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 6 q^{3} - 6 q^{5} + 8 q^{7} - 2 q^{11} - 12 q^{17} + 6 q^{19} - 10 q^{21} + 12 q^{23} - 24 q^{29} - 12 q^{33} + 2 q^{35} + 6 q^{37} + 4 q^{39} + 12 q^{45} - 8 q^{49} + 34 q^{51} + 6 q^{53} - 42 q^{59}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.449868 1.67893i −0.259732 0.969331i −0.965397 0.260786i \(-0.916018\pi\)
0.705665 0.708546i \(-0.250648\pi\)
\(4\) 0 0
\(5\) 0.731029 + 0.195879i 0.326926 + 0.0875996i 0.418549 0.908194i \(-0.362539\pi\)
−0.0916229 + 0.995794i \(0.529205\pi\)
\(6\) 0 0
\(7\) −2.52163 + 0.800849i −0.953088 + 0.302693i
\(8\) 0 0
\(9\) −0.0183525 + 0.0105958i −0.00611749 + 0.00353194i
\(10\) 0 0
\(11\) −1.18531 4.42364i −0.357385 1.33378i −0.877457 0.479656i \(-0.840762\pi\)
0.520072 0.854122i \(-0.325905\pi\)
\(12\) 0 0
\(13\) −2.89529 2.89529i −0.803010 0.803010i 0.180555 0.983565i \(-0.442211\pi\)
−0.983565 + 0.180555i \(0.942211\pi\)
\(14\) 0 0
\(15\) 1.31547i 0.339652i
\(16\) 0 0
\(17\) −2.28427 1.31882i −0.554017 0.319862i 0.196724 0.980459i \(-0.436970\pi\)
−0.750740 + 0.660597i \(0.770303\pi\)
\(18\) 0 0
\(19\) 5.38016 + 1.44161i 1.23429 + 0.330728i 0.816249 0.577700i \(-0.196049\pi\)
0.418043 + 0.908427i \(0.362716\pi\)
\(20\) 0 0
\(21\) 2.47897 + 3.87337i 0.540956 + 0.845240i
\(22\) 0 0
\(23\) −1.01143 1.75184i −0.210897 0.365284i 0.741099 0.671396i \(-0.234305\pi\)
−0.951995 + 0.306112i \(0.900972\pi\)
\(24\) 0 0
\(25\) −3.83409 2.21361i −0.766818 0.442723i
\(26\) 0 0
\(27\) −3.66114 3.66114i −0.704587 0.704587i
\(28\) 0 0
\(29\) −0.209526 + 0.209526i −0.0389080 + 0.0389080i −0.726293 0.687385i \(-0.758758\pi\)
0.687385 + 0.726293i \(0.258758\pi\)
\(30\) 0 0
\(31\) −3.33052 + 5.76864i −0.598180 + 1.03608i 0.394910 + 0.918720i \(0.370776\pi\)
−0.993090 + 0.117358i \(0.962558\pi\)
\(32\) 0 0
\(33\) −6.89376 + 3.98011i −1.20005 + 0.692849i
\(34\) 0 0
\(35\) −2.00026 + 0.0915096i −0.338105 + 0.0154679i
\(36\) 0 0
\(37\) 1.02406 3.82183i 0.168354 0.628305i −0.829235 0.558900i \(-0.811223\pi\)
0.997589 0.0694046i \(-0.0221099\pi\)
\(38\) 0 0
\(39\) −3.55850 + 6.16350i −0.569815 + 0.986949i
\(40\) 0 0
\(41\) −5.04472 −0.787853 −0.393926 0.919142i \(-0.628883\pi\)
−0.393926 + 0.919142i \(0.628883\pi\)
\(42\) 0 0
\(43\) 3.79454 3.79454i 0.578662 0.578662i −0.355873 0.934534i \(-0.615816\pi\)
0.934534 + 0.355873i \(0.115816\pi\)
\(44\) 0 0
\(45\) −0.0154917 + 0.00415099i −0.00230936 + 0.000618792i
\(46\) 0 0
\(47\) 2.53993 + 4.39928i 0.370486 + 0.641701i 0.989640 0.143568i \(-0.0458577\pi\)
−0.619154 + 0.785270i \(0.712524\pi\)
\(48\) 0 0
\(49\) 5.71728 4.03890i 0.816754 0.576985i
\(50\) 0 0
\(51\) −1.18659 + 4.42843i −0.166156 + 0.620104i
\(52\) 0 0
\(53\) 10.7333 2.87599i 1.47434 0.395047i 0.569921 0.821699i \(-0.306974\pi\)
0.904416 + 0.426652i \(0.140307\pi\)
\(54\) 0 0
\(55\) 3.46599i 0.467354i
\(56\) 0 0
\(57\) 9.68145i 1.28234i
\(58\) 0 0
\(59\) 5.23198 1.40190i 0.681145 0.182512i 0.0983751 0.995149i \(-0.468635\pi\)
0.582770 + 0.812637i \(0.301969\pi\)
\(60\) 0 0
\(61\) −1.56694 + 5.84791i −0.200626 + 0.748748i 0.790112 + 0.612962i \(0.210022\pi\)
−0.990738 + 0.135785i \(0.956644\pi\)
\(62\) 0 0
\(63\) 0.0377926 0.0414163i 0.00476142 0.00521796i
\(64\) 0 0
\(65\) −1.54942 2.68367i −0.192182 0.332868i
\(66\) 0 0
\(67\) −9.24005 + 2.47586i −1.12885 + 0.302475i −0.774461 0.632622i \(-0.781979\pi\)
−0.354392 + 0.935097i \(0.615312\pi\)
\(68\) 0 0
\(69\) −2.48621 + 2.48621i −0.299305 + 0.299305i
\(70\) 0 0
\(71\) 7.25507 0.861018 0.430509 0.902586i \(-0.358334\pi\)
0.430509 + 0.902586i \(0.358334\pi\)
\(72\) 0 0
\(73\) 3.29633 5.70940i 0.385806 0.668235i −0.606075 0.795408i \(-0.707257\pi\)
0.991881 + 0.127172i \(0.0405901\pi\)
\(74\) 0 0
\(75\) −1.99167 + 7.43301i −0.229978 + 0.858290i
\(76\) 0 0
\(77\) 6.53159 + 10.2056i 0.744344 + 1.16303i
\(78\) 0 0
\(79\) 13.0615 7.54108i 1.46954 0.848437i 0.470121 0.882602i \(-0.344210\pi\)
0.999416 + 0.0341648i \(0.0108771\pi\)
\(80\) 0 0
\(81\) −4.53156 + 7.84890i −0.503507 + 0.872100i
\(82\) 0 0
\(83\) 8.00548 8.00548i 0.878715 0.878715i −0.114687 0.993402i \(-0.536586\pi\)
0.993402 + 0.114687i \(0.0365864\pi\)
\(84\) 0 0
\(85\) −1.41154 1.41154i −0.153103 0.153103i
\(86\) 0 0
\(87\) 0.446039 + 0.257521i 0.0478204 + 0.0276091i
\(88\) 0 0
\(89\) 3.92536 + 6.79892i 0.416087 + 0.720684i 0.995542 0.0943203i \(-0.0300678\pi\)
−0.579455 + 0.815004i \(0.696734\pi\)
\(90\) 0 0
\(91\) 9.61956 + 4.98218i 1.00840 + 0.522274i
\(92\) 0 0
\(93\) 11.1834 + 2.99659i 1.15967 + 0.310732i
\(94\) 0 0
\(95\) 3.65067 + 2.10772i 0.374551 + 0.216247i
\(96\) 0 0
\(97\) 8.79532i 0.893029i 0.894776 + 0.446514i \(0.147335\pi\)
−0.894776 + 0.446514i \(0.852665\pi\)
\(98\) 0 0
\(99\) 0.0686254 + 0.0686254i 0.00689712 + 0.00689712i
\(100\) 0 0
\(101\) 0.597042 + 2.22819i 0.0594079 + 0.221713i 0.989247 0.146252i \(-0.0467211\pi\)
−0.929839 + 0.367966i \(0.880054\pi\)
\(102\) 0 0
\(103\) −11.8007 + 6.81315i −1.16276 + 0.671319i −0.951964 0.306211i \(-0.900939\pi\)
−0.210795 + 0.977530i \(0.567605\pi\)
\(104\) 0 0
\(105\) 1.05349 + 3.31713i 0.102810 + 0.323719i
\(106\) 0 0
\(107\) −4.56363 1.22282i −0.441183 0.118215i 0.0313881 0.999507i \(-0.490007\pi\)
−0.472571 + 0.881293i \(0.656674\pi\)
\(108\) 0 0
\(109\) −2.13269 7.95931i −0.204275 0.762364i −0.989669 0.143368i \(-0.954207\pi\)
0.785395 0.618995i \(-0.212460\pi\)
\(110\) 0 0
\(111\) −6.87728 −0.652763
\(112\) 0 0
\(113\) 18.4851 1.73893 0.869467 0.493990i \(-0.164462\pi\)
0.869467 + 0.493990i \(0.164462\pi\)
\(114\) 0 0
\(115\) −0.396233 1.47876i −0.0369490 0.137895i
\(116\) 0 0
\(117\) 0.0838137 + 0.0224578i 0.00774858 + 0.00207623i
\(118\) 0 0
\(119\) 6.81627 + 1.49624i 0.624847 + 0.137160i
\(120\) 0 0
\(121\) −8.63736 + 4.98678i −0.785215 + 0.453344i
\(122\) 0 0
\(123\) 2.26946 + 8.46974i 0.204630 + 0.763690i
\(124\) 0 0
\(125\) −5.04499 5.04499i −0.451237 0.451237i
\(126\) 0 0
\(127\) 13.0667i 1.15948i −0.814802 0.579739i \(-0.803154\pi\)
0.814802 0.579739i \(-0.196846\pi\)
\(128\) 0 0
\(129\) −8.07781 4.66373i −0.711212 0.410618i
\(130\) 0 0
\(131\) 8.29942 + 2.22382i 0.725124 + 0.194296i 0.602457 0.798152i \(-0.294189\pi\)
0.122667 + 0.992448i \(0.460855\pi\)
\(132\) 0 0
\(133\) −14.7213 + 0.673483i −1.27650 + 0.0583984i
\(134\) 0 0
\(135\) −1.95926 3.39354i −0.168626 0.292070i
\(136\) 0 0
\(137\) 19.9938 + 11.5434i 1.70818 + 0.986221i 0.936809 + 0.349841i \(0.113764\pi\)
0.771376 + 0.636380i \(0.219569\pi\)
\(138\) 0 0
\(139\) −6.09369 6.09369i −0.516860 0.516860i 0.399760 0.916620i \(-0.369093\pi\)
−0.916620 + 0.399760i \(0.869093\pi\)
\(140\) 0 0
\(141\) 6.24346 6.24346i 0.525794 0.525794i
\(142\) 0 0
\(143\) −9.37591 + 16.2396i −0.784053 + 1.35802i
\(144\) 0 0
\(145\) −0.194211 + 0.112128i −0.0161284 + 0.00931173i
\(146\) 0 0
\(147\) −9.35305 7.78195i −0.771427 0.641844i
\(148\) 0 0
\(149\) −3.12680 + 11.6694i −0.256157 + 0.955992i 0.711286 + 0.702903i \(0.248113\pi\)
−0.967443 + 0.253089i \(0.918553\pi\)
\(150\) 0 0
\(151\) 0.813682 1.40934i 0.0662165 0.114690i −0.831016 0.556248i \(-0.812241\pi\)
0.897233 + 0.441557i \(0.145574\pi\)
\(152\) 0 0
\(153\) 0.0558960 0.00451892
\(154\) 0 0
\(155\) −3.56466 + 3.56466i −0.286321 + 0.286321i
\(156\) 0 0
\(157\) −23.2350 + 6.22579i −1.85435 + 0.496872i −0.999749 0.0224085i \(-0.992867\pi\)
−0.854604 + 0.519281i \(0.826200\pi\)
\(158\) 0 0
\(159\) −9.65717 16.7267i −0.765864 1.32651i
\(160\) 0 0
\(161\) 3.95341 + 3.60750i 0.311572 + 0.284311i
\(162\) 0 0
\(163\) −2.36008 + 8.80794i −0.184856 + 0.689891i 0.809806 + 0.586698i \(0.199573\pi\)
−0.994661 + 0.103193i \(0.967094\pi\)
\(164\) 0 0
\(165\) −5.81916 + 1.55924i −0.453021 + 0.121387i
\(166\) 0 0
\(167\) 3.18749i 0.246656i −0.992366 0.123328i \(-0.960643\pi\)
0.992366 0.123328i \(-0.0393566\pi\)
\(168\) 0 0
\(169\) 3.76544i 0.289649i
\(170\) 0 0
\(171\) −0.114014 + 0.0305500i −0.00871888 + 0.00233622i
\(172\) 0 0
\(173\) 4.98693 18.6115i 0.379149 1.41500i −0.468038 0.883708i \(-0.655039\pi\)
0.847187 0.531295i \(-0.178294\pi\)
\(174\) 0 0
\(175\) 11.4409 + 2.51140i 0.864854 + 0.189844i
\(176\) 0 0
\(177\) −4.70740 8.15345i −0.353830 0.612851i
\(178\) 0 0
\(179\) 7.03090 1.88392i 0.525514 0.140811i 0.0136980 0.999906i \(-0.495640\pi\)
0.511816 + 0.859095i \(0.328973\pi\)
\(180\) 0 0
\(181\) 5.59617 5.59617i 0.415960 0.415960i −0.467849 0.883809i \(-0.654971\pi\)
0.883809 + 0.467849i \(0.154971\pi\)
\(182\) 0 0
\(183\) 10.5231 0.777894
\(184\) 0 0
\(185\) 1.49723 2.59328i 0.110079 0.190662i
\(186\) 0 0
\(187\) −3.12643 + 11.6680i −0.228627 + 0.853249i
\(188\) 0 0
\(189\) 12.1641 + 6.30004i 0.884807 + 0.458261i
\(190\) 0 0
\(191\) −4.12735 + 2.38292i −0.298644 + 0.172422i −0.641834 0.766844i \(-0.721826\pi\)
0.343189 + 0.939266i \(0.388493\pi\)
\(192\) 0 0
\(193\) 2.67050 4.62543i 0.192226 0.332946i −0.753761 0.657148i \(-0.771763\pi\)
0.945988 + 0.324202i \(0.105096\pi\)
\(194\) 0 0
\(195\) −3.80866 + 3.80866i −0.272744 + 0.272744i
\(196\) 0 0
\(197\) −11.6754 11.6754i −0.831838 0.831838i 0.155930 0.987768i \(-0.450163\pi\)
−0.987768 + 0.155930i \(0.950163\pi\)
\(198\) 0 0
\(199\) 9.02919 + 5.21301i 0.640062 + 0.369540i 0.784639 0.619953i \(-0.212849\pi\)
−0.144576 + 0.989494i \(0.546182\pi\)
\(200\) 0 0
\(201\) 8.31361 + 14.3996i 0.586397 + 1.01567i
\(202\) 0 0
\(203\) 0.360549 0.696147i 0.0253056 0.0488599i
\(204\) 0 0
\(205\) −3.68784 0.988153i −0.257570 0.0690156i
\(206\) 0 0
\(207\) 0.0371243 + 0.0214337i 0.00258032 + 0.00148975i
\(208\) 0 0
\(209\) 25.5086i 1.76447i
\(210\) 0 0
\(211\) 0.716512 + 0.716512i 0.0493267 + 0.0493267i 0.731340 0.682013i \(-0.238895\pi\)
−0.682013 + 0.731340i \(0.738895\pi\)
\(212\) 0 0
\(213\) −3.26383 12.1808i −0.223634 0.834612i
\(214\) 0 0
\(215\) 3.51719 2.03065i 0.239870 0.138489i
\(216\) 0 0
\(217\) 3.77856 17.2136i 0.256505 1.16854i
\(218\) 0 0
\(219\) −11.0686 2.96583i −0.747947 0.200412i
\(220\) 0 0
\(221\) 2.79525 + 10.4320i 0.188029 + 0.701733i
\(222\) 0 0
\(223\) −12.9181 −0.865062 −0.432531 0.901619i \(-0.642379\pi\)
−0.432531 + 0.901619i \(0.642379\pi\)
\(224\) 0 0
\(225\) 0.0938201 0.00625467
\(226\) 0 0
\(227\) −4.02569 15.0241i −0.267195 0.997184i −0.960893 0.276919i \(-0.910687\pi\)
0.693699 0.720265i \(-0.255980\pi\)
\(228\) 0 0
\(229\) −13.3759 3.58406i −0.883903 0.236841i −0.211813 0.977310i \(-0.567937\pi\)
−0.672090 + 0.740469i \(0.734603\pi\)
\(230\) 0 0
\(231\) 14.1961 15.5572i 0.934032 1.02359i
\(232\) 0 0
\(233\) −10.6523 + 6.15010i −0.697854 + 0.402906i −0.806548 0.591169i \(-0.798667\pi\)
0.108694 + 0.994075i \(0.465333\pi\)
\(234\) 0 0
\(235\) 0.995035 + 3.71352i 0.0649089 + 0.242243i
\(236\) 0 0
\(237\) −18.5369 18.5369i −1.20410 1.20410i
\(238\) 0 0
\(239\) 7.20218i 0.465870i 0.972492 + 0.232935i \(0.0748329\pi\)
−0.972492 + 0.232935i \(0.925167\pi\)
\(240\) 0 0
\(241\) 20.7383 + 11.9733i 1.33587 + 0.771265i 0.986192 0.165605i \(-0.0529577\pi\)
0.349678 + 0.936870i \(0.386291\pi\)
\(242\) 0 0
\(243\) 0.212722 + 0.0569986i 0.0136461 + 0.00365646i
\(244\) 0 0
\(245\) 4.97063 1.83266i 0.317562 0.117084i
\(246\) 0 0
\(247\) −11.4032 19.7510i −0.725571 1.25673i
\(248\) 0 0
\(249\) −17.0421 9.83923i −1.08000 0.623536i
\(250\) 0 0
\(251\) 6.11266 + 6.11266i 0.385828 + 0.385828i 0.873196 0.487369i \(-0.162043\pi\)
−0.487369 + 0.873196i \(0.662043\pi\)
\(252\) 0 0
\(253\) −6.55066 + 6.55066i −0.411837 + 0.411837i
\(254\) 0 0
\(255\) −1.73487 + 3.00488i −0.108642 + 0.188173i
\(256\) 0 0
\(257\) −19.7315 + 11.3920i −1.23082 + 0.710613i −0.967200 0.254015i \(-0.918249\pi\)
−0.263617 + 0.964627i \(0.584915\pi\)
\(258\) 0 0
\(259\) 0.478413 + 10.4574i 0.0297272 + 0.649790i
\(260\) 0 0
\(261\) 0.00162522 0.00606542i 0.000100599 0.000375440i
\(262\) 0 0
\(263\) 5.28788 9.15888i 0.326065 0.564761i −0.655662 0.755054i \(-0.727611\pi\)
0.981727 + 0.190293i \(0.0609439\pi\)
\(264\) 0 0
\(265\) 8.40973 0.516605
\(266\) 0 0
\(267\) 9.64903 9.64903i 0.590511 0.590511i
\(268\) 0 0
\(269\) 10.0057 2.68103i 0.610061 0.163465i 0.0594553 0.998231i \(-0.481064\pi\)
0.550605 + 0.834766i \(0.314397\pi\)
\(270\) 0 0
\(271\) −12.3322 21.3601i −0.749131 1.29753i −0.948240 0.317555i \(-0.897138\pi\)
0.199109 0.979977i \(-0.436195\pi\)
\(272\) 0 0
\(273\) 4.03720 18.3919i 0.244342 1.11313i
\(274\) 0 0
\(275\) −5.24764 + 19.5845i −0.316445 + 1.18099i
\(276\) 0 0
\(277\) −10.3610 + 2.77622i −0.622531 + 0.166807i −0.556278 0.830996i \(-0.687771\pi\)
−0.0662529 + 0.997803i \(0.521104\pi\)
\(278\) 0 0
\(279\) 0.141158i 0.00845093i
\(280\) 0 0
\(281\) 6.46396i 0.385608i 0.981237 + 0.192804i \(0.0617581\pi\)
−0.981237 + 0.192804i \(0.938242\pi\)
\(282\) 0 0
\(283\) −19.0327 + 5.09979i −1.13138 + 0.303151i −0.775478 0.631374i \(-0.782491\pi\)
−0.355897 + 0.934525i \(0.615825\pi\)
\(284\) 0 0
\(285\) 1.89639 7.07742i 0.112332 0.419230i
\(286\) 0 0
\(287\) 12.7209 4.04006i 0.750893 0.238477i
\(288\) 0 0
\(289\) −5.02141 8.69734i −0.295377 0.511608i
\(290\) 0 0
\(291\) 14.7667 3.95673i 0.865641 0.231948i
\(292\) 0 0
\(293\) 2.96394 2.96394i 0.173155 0.173155i −0.615209 0.788364i \(-0.710928\pi\)
0.788364 + 0.615209i \(0.210928\pi\)
\(294\) 0 0
\(295\) 4.09933 0.238672
\(296\) 0 0
\(297\) −11.8560 + 20.5352i −0.687954 + 1.19157i
\(298\) 0 0
\(299\) −2.14372 + 8.00046i −0.123974 + 0.462679i
\(300\) 0 0
\(301\) −6.52959 + 12.6073i −0.376359 + 0.726672i
\(302\) 0 0
\(303\) 3.47239 2.00479i 0.199484 0.115172i
\(304\) 0 0
\(305\) −2.29096 + 3.96806i −0.131180 + 0.227210i
\(306\) 0 0
\(307\) −8.60981 + 8.60981i −0.491388 + 0.491388i −0.908743 0.417356i \(-0.862957\pi\)
0.417356 + 0.908743i \(0.362957\pi\)
\(308\) 0 0
\(309\) 16.7476 + 16.7476i 0.952736 + 0.952736i
\(310\) 0 0
\(311\) −4.98997 2.88096i −0.282955 0.163364i 0.351805 0.936073i \(-0.385568\pi\)
−0.634760 + 0.772709i \(0.718901\pi\)
\(312\) 0 0
\(313\) −4.01618 6.95623i −0.227008 0.393190i 0.729912 0.683541i \(-0.239561\pi\)
−0.956920 + 0.290352i \(0.906228\pi\)
\(314\) 0 0
\(315\) 0.0357401 0.0228738i 0.00201372 0.00128879i
\(316\) 0 0
\(317\) 9.01190 + 2.41473i 0.506159 + 0.135625i 0.502857 0.864370i \(-0.332282\pi\)
0.00330181 + 0.999995i \(0.498949\pi\)
\(318\) 0 0
\(319\) 1.17522 + 0.678515i 0.0657998 + 0.0379895i
\(320\) 0 0
\(321\) 8.21213i 0.458356i
\(322\) 0 0
\(323\) −10.3885 10.3885i −0.578031 0.578031i
\(324\) 0 0
\(325\) 4.69176 + 17.5099i 0.260252 + 0.971273i
\(326\) 0 0
\(327\) −12.4037 + 7.16128i −0.685926 + 0.396020i
\(328\) 0 0
\(329\) −9.92793 9.05928i −0.547344 0.499454i
\(330\) 0 0
\(331\) −4.96046 1.32915i −0.272652 0.0730568i 0.119903 0.992786i \(-0.461742\pi\)
−0.392554 + 0.919729i \(0.628408\pi\)
\(332\) 0 0
\(333\) 0.0217014 + 0.0809907i 0.00118923 + 0.00443827i
\(334\) 0 0
\(335\) −7.23972 −0.395548
\(336\) 0 0
\(337\) 1.50446 0.0819532 0.0409766 0.999160i \(-0.486953\pi\)
0.0409766 + 0.999160i \(0.486953\pi\)
\(338\) 0 0
\(339\) −8.31587 31.0353i −0.451656 1.68560i
\(340\) 0 0
\(341\) 29.4661 + 7.89541i 1.59568 + 0.427561i
\(342\) 0 0
\(343\) −11.1823 + 14.7633i −0.603790 + 0.797143i
\(344\) 0 0
\(345\) −2.30449 + 1.33050i −0.124070 + 0.0716316i
\(346\) 0 0
\(347\) −2.24815 8.39020i −0.120687 0.450410i 0.878962 0.476891i \(-0.158236\pi\)
−0.999649 + 0.0264814i \(0.991570\pi\)
\(348\) 0 0
\(349\) 15.6677 + 15.6677i 0.838672 + 0.838672i 0.988684 0.150012i \(-0.0479313\pi\)
−0.150012 + 0.988684i \(0.547931\pi\)
\(350\) 0 0
\(351\) 21.2002i 1.13158i
\(352\) 0 0
\(353\) 21.5439 + 12.4384i 1.14666 + 0.662027i 0.948072 0.318056i \(-0.103030\pi\)
0.198592 + 0.980082i \(0.436363\pi\)
\(354\) 0 0
\(355\) 5.30367 + 1.42111i 0.281490 + 0.0754249i
\(356\) 0 0
\(357\) −0.554347 12.1172i −0.0293391 0.641308i
\(358\) 0 0
\(359\) 4.32864 + 7.49742i 0.228457 + 0.395699i 0.957351 0.288928i \(-0.0932987\pi\)
−0.728894 + 0.684626i \(0.759965\pi\)
\(360\) 0 0
\(361\) 10.4134 + 6.01216i 0.548072 + 0.316429i
\(362\) 0 0
\(363\) 12.2581 + 12.2581i 0.643386 + 0.643386i
\(364\) 0 0
\(365\) 3.52806 3.52806i 0.184667 0.184667i
\(366\) 0 0
\(367\) 11.9671 20.7276i 0.624676 1.08197i −0.363928 0.931427i \(-0.618564\pi\)
0.988603 0.150543i \(-0.0481022\pi\)
\(368\) 0 0
\(369\) 0.0925831 0.0534529i 0.00481968 0.00278264i
\(370\) 0 0
\(371\) −24.7623 + 15.8480i −1.28560 + 0.822786i
\(372\) 0 0
\(373\) 0.612436 2.28564i 0.0317107 0.118346i −0.948256 0.317506i \(-0.897155\pi\)
0.979967 + 0.199160i \(0.0638213\pi\)
\(374\) 0 0
\(375\) −6.20061 + 10.7398i −0.320198 + 0.554599i
\(376\) 0 0
\(377\) 1.21328 0.0624870
\(378\) 0 0
\(379\) 5.34619 5.34619i 0.274615 0.274615i −0.556340 0.830955i \(-0.687795\pi\)
0.830955 + 0.556340i \(0.187795\pi\)
\(380\) 0 0
\(381\) −21.9380 + 5.87828i −1.12392 + 0.301153i
\(382\) 0 0
\(383\) 12.5700 + 21.7718i 0.642296 + 1.11249i 0.984919 + 0.173016i \(0.0553514\pi\)
−0.342623 + 0.939473i \(0.611315\pi\)
\(384\) 0 0
\(385\) 2.77573 + 8.73996i 0.141464 + 0.445429i
\(386\) 0 0
\(387\) −0.0294330 + 0.109845i −0.00149616 + 0.00558375i
\(388\) 0 0
\(389\) −6.08010 + 1.62916i −0.308273 + 0.0826016i −0.409639 0.912248i \(-0.634345\pi\)
0.101366 + 0.994849i \(0.467679\pi\)
\(390\) 0 0
\(391\) 5.33557i 0.269831i
\(392\) 0 0
\(393\) 14.9346i 0.753350i
\(394\) 0 0
\(395\) 11.0255 2.95427i 0.554753 0.148646i
\(396\) 0 0
\(397\) 4.67347 17.4416i 0.234555 0.875371i −0.743794 0.668409i \(-0.766976\pi\)
0.978349 0.206962i \(-0.0663577\pi\)
\(398\) 0 0
\(399\) 7.75338 + 24.4131i 0.388154 + 1.22218i
\(400\) 0 0
\(401\) −7.88832 13.6630i −0.393924 0.682296i 0.599039 0.800720i \(-0.295549\pi\)
−0.992963 + 0.118423i \(0.962216\pi\)
\(402\) 0 0
\(403\) 26.3447 7.05905i 1.31232 0.351636i
\(404\) 0 0
\(405\) −4.85014 + 4.85014i −0.241005 + 0.241005i
\(406\) 0 0
\(407\) −18.1202 −0.898186
\(408\) 0 0
\(409\) 14.9850 25.9548i 0.740963 1.28338i −0.211095 0.977466i \(-0.567703\pi\)
0.952057 0.305919i \(-0.0989637\pi\)
\(410\) 0 0
\(411\) 10.3860 38.7612i 0.512305 1.91195i
\(412\) 0 0
\(413\) −12.0704 + 7.72511i −0.593946 + 0.380128i
\(414\) 0 0
\(415\) 7.42034 4.28413i 0.364250 0.210300i
\(416\) 0 0
\(417\) −7.48953 + 12.9722i −0.366764 + 0.635253i
\(418\) 0 0
\(419\) 19.0681 19.0681i 0.931537 0.931537i −0.0662653 0.997802i \(-0.521108\pi\)
0.997802 + 0.0662653i \(0.0211084\pi\)
\(420\) 0 0
\(421\) 1.12116 + 1.12116i 0.0546418 + 0.0546418i 0.733900 0.679258i \(-0.237698\pi\)
−0.679258 + 0.733900i \(0.737698\pi\)
\(422\) 0 0
\(423\) −0.0932279 0.0538251i −0.00453289 0.00261707i
\(424\) 0 0
\(425\) 5.83873 + 10.1130i 0.283220 + 0.490552i
\(426\) 0 0
\(427\) −0.732036 16.0012i −0.0354257 0.774351i
\(428\) 0 0
\(429\) 31.4830 + 8.43585i 1.52001 + 0.407287i
\(430\) 0 0
\(431\) −14.2383 8.22048i −0.685834 0.395966i 0.116216 0.993224i \(-0.462924\pi\)
−0.802049 + 0.597258i \(0.796257\pi\)
\(432\) 0 0
\(433\) 34.3709i 1.65176i 0.563847 + 0.825879i \(0.309321\pi\)
−0.563847 + 0.825879i \(0.690679\pi\)
\(434\) 0 0
\(435\) 0.275625 + 0.275625i 0.0132152 + 0.0132152i
\(436\) 0 0
\(437\) −2.91616 10.8833i −0.139499 0.520617i
\(438\) 0 0
\(439\) −8.37299 + 4.83415i −0.399621 + 0.230721i −0.686321 0.727299i \(-0.740775\pi\)
0.286699 + 0.958021i \(0.407442\pi\)
\(440\) 0 0
\(441\) −0.0621309 + 0.134703i −0.00295861 + 0.00641443i
\(442\) 0 0
\(443\) 33.5974 + 9.00239i 1.59626 + 0.427717i 0.943910 0.330202i \(-0.107117\pi\)
0.652350 + 0.757918i \(0.273783\pi\)
\(444\) 0 0
\(445\) 1.53779 + 5.73910i 0.0728982 + 0.272060i
\(446\) 0 0
\(447\) 20.9987 0.993205
\(448\) 0 0
\(449\) −35.5072 −1.67569 −0.837844 0.545910i \(-0.816184\pi\)
−0.837844 + 0.545910i \(0.816184\pi\)
\(450\) 0 0
\(451\) 5.97956 + 22.3160i 0.281567 + 1.05082i
\(452\) 0 0
\(453\) −2.73223 0.732100i −0.128372 0.0343970i
\(454\) 0 0
\(455\) 6.05628 + 5.52638i 0.283923 + 0.259081i
\(456\) 0 0
\(457\) 26.0860 15.0607i 1.22025 0.704512i 0.255279 0.966867i \(-0.417833\pi\)
0.964971 + 0.262356i \(0.0844993\pi\)
\(458\) 0 0
\(459\) 3.53464 + 13.1914i 0.164983 + 0.615724i
\(460\) 0 0
\(461\) 2.37946 + 2.37946i 0.110822 + 0.110822i 0.760344 0.649521i \(-0.225031\pi\)
−0.649521 + 0.760344i \(0.725031\pi\)
\(462\) 0 0
\(463\) 1.23324i 0.0573136i 0.999589 + 0.0286568i \(0.00912299\pi\)
−0.999589 + 0.0286568i \(0.990877\pi\)
\(464\) 0 0
\(465\) 7.58845 + 4.38120i 0.351906 + 0.203173i
\(466\) 0 0
\(467\) 30.7990 + 8.25258i 1.42521 + 0.381884i 0.887329 0.461137i \(-0.152558\pi\)
0.537881 + 0.843021i \(0.319225\pi\)
\(468\) 0 0
\(469\) 21.3172 13.6431i 0.984339 0.629980i
\(470\) 0 0
\(471\) 20.9054 + 36.2091i 0.963268 + 1.66843i
\(472\) 0 0
\(473\) −21.2834 12.2880i −0.978611 0.565001i
\(474\) 0 0
\(475\) −17.4368 17.4368i −0.800057 0.800057i
\(476\) 0 0
\(477\) −0.166510 + 0.166510i −0.00762396 + 0.00762396i
\(478\) 0 0
\(479\) 6.64611 11.5114i 0.303668 0.525969i −0.673296 0.739373i \(-0.735122\pi\)
0.976964 + 0.213404i \(0.0684552\pi\)
\(480\) 0 0
\(481\) −14.0303 + 8.10037i −0.639725 + 0.369345i
\(482\) 0 0
\(483\) 4.27824 8.26040i 0.194667 0.375861i
\(484\) 0 0
\(485\) −1.72281 + 6.42963i −0.0782290 + 0.291955i
\(486\) 0 0
\(487\) −0.642044 + 1.11205i −0.0290938 + 0.0503919i −0.880206 0.474592i \(-0.842595\pi\)
0.851112 + 0.524984i \(0.175929\pi\)
\(488\) 0 0
\(489\) 15.8497 0.716746
\(490\) 0 0
\(491\) −7.08341 + 7.08341i −0.319670 + 0.319670i −0.848640 0.528970i \(-0.822578\pi\)
0.528970 + 0.848640i \(0.322578\pi\)
\(492\) 0 0
\(493\) 0.754942 0.202286i 0.0340009 0.00911051i
\(494\) 0 0
\(495\) 0.0367249 + 0.0636095i 0.00165066 + 0.00285903i
\(496\) 0 0
\(497\) −18.2946 + 5.81022i −0.820627 + 0.260624i
\(498\) 0 0
\(499\) −5.87786 + 21.9365i −0.263129 + 0.982011i 0.700256 + 0.713891i \(0.253069\pi\)
−0.963386 + 0.268120i \(0.913598\pi\)
\(500\) 0 0
\(501\) −5.35158 + 1.43395i −0.239091 + 0.0640642i
\(502\) 0 0
\(503\) 36.0928i 1.60930i 0.593751 + 0.804649i \(0.297646\pi\)
−0.593751 + 0.804649i \(0.702354\pi\)
\(504\) 0 0
\(505\) 1.74582i 0.0776880i
\(506\) 0 0
\(507\) 6.32191 1.69395i 0.280766 0.0752310i
\(508\) 0 0
\(509\) −1.40903 + 5.25856i −0.0624540 + 0.233081i −0.990097 0.140388i \(-0.955165\pi\)
0.927643 + 0.373469i \(0.121832\pi\)
\(510\) 0 0
\(511\) −3.73976 + 17.0369i −0.165437 + 0.753668i
\(512\) 0 0
\(513\) −14.4196 24.9755i −0.636640 1.10269i
\(514\) 0 0
\(515\) −9.96122 + 2.66910i −0.438944 + 0.117615i
\(516\) 0 0
\(517\) 16.4502 16.4502i 0.723481 0.723481i
\(518\) 0 0
\(519\) −33.4908 −1.47008
\(520\) 0 0
\(521\) 2.57861 4.46629i 0.112971 0.195672i −0.803996 0.594635i \(-0.797297\pi\)
0.916967 + 0.398963i \(0.130630\pi\)
\(522\) 0 0
\(523\) −1.98945 + 7.42474i −0.0869928 + 0.324661i −0.995684 0.0928072i \(-0.970416\pi\)
0.908691 + 0.417469i \(0.137083\pi\)
\(524\) 0 0
\(525\) −0.930458 20.3384i −0.0406085 0.887639i
\(526\) 0 0
\(527\) 15.2156 8.78475i 0.662803 0.382670i
\(528\) 0 0
\(529\) 9.45404 16.3749i 0.411045 0.711951i
\(530\) 0 0
\(531\) −0.0811654 + 0.0811654i −0.00352228 + 0.00352228i
\(532\) 0 0
\(533\) 14.6059 + 14.6059i 0.632653 + 0.632653i
\(534\) 0 0
\(535\) −3.09662 1.78784i −0.133879 0.0772949i
\(536\) 0 0
\(537\) −6.32595 10.9569i −0.272985 0.472824i
\(538\) 0 0
\(539\) −24.6434 20.5039i −1.06147 0.883163i
\(540\) 0 0
\(541\) 7.55039 + 2.02312i 0.324617 + 0.0869808i 0.417447 0.908701i \(-0.362925\pi\)
−0.0928305 + 0.995682i \(0.529591\pi\)
\(542\) 0 0
\(543\) −11.9131 6.87805i −0.511241 0.295165i
\(544\) 0 0
\(545\) 6.23624i 0.267131i
\(546\) 0 0
\(547\) −3.45431 3.45431i −0.147696 0.147696i 0.629392 0.777088i \(-0.283304\pi\)
−0.777088 + 0.629392i \(0.783304\pi\)
\(548\) 0 0
\(549\) −0.0332060 0.123927i −0.00141720 0.00528906i
\(550\) 0 0
\(551\) −1.42934 + 0.825229i −0.0608918 + 0.0351559i
\(552\) 0 0
\(553\) −26.8971 + 29.4762i −1.14378 + 1.25345i
\(554\) 0 0
\(555\) −5.02749 1.34711i −0.213405 0.0571817i
\(556\) 0 0
\(557\) −7.47554 27.8991i −0.316749 1.18212i −0.922350 0.386354i \(-0.873734\pi\)
0.605602 0.795768i \(-0.292933\pi\)
\(558\) 0 0
\(559\) −21.9726 −0.929342
\(560\) 0 0
\(561\) 20.9963 0.886463
\(562\) 0 0
\(563\) −0.243342 0.908166i −0.0102557 0.0382746i 0.960608 0.277906i \(-0.0896402\pi\)
−0.970864 + 0.239631i \(0.922974\pi\)
\(564\) 0 0
\(565\) 13.5132 + 3.62084i 0.568503 + 0.152330i
\(566\) 0 0
\(567\) 5.14116 23.4211i 0.215909 0.983596i
\(568\) 0 0
\(569\) −11.5141 + 6.64769i −0.482698 + 0.278686i −0.721540 0.692373i \(-0.756565\pi\)
0.238842 + 0.971058i \(0.423232\pi\)
\(570\) 0 0
\(571\) −2.11813 7.90497i −0.0886410 0.330813i 0.907338 0.420402i \(-0.138111\pi\)
−0.995979 + 0.0895898i \(0.971444\pi\)
\(572\) 0 0
\(573\) 5.85753 + 5.85753i 0.244702 + 0.244702i
\(574\) 0 0
\(575\) 8.95562i 0.373475i
\(576\) 0 0
\(577\) 23.0378 + 13.3009i 0.959077 + 0.553724i 0.895889 0.444278i \(-0.146540\pi\)
0.0631883 + 0.998002i \(0.479873\pi\)
\(578\) 0 0
\(579\) −8.96716 2.40274i −0.372662 0.0998546i
\(580\) 0 0
\(581\) −13.7757 + 26.5981i −0.571513 + 1.10347i
\(582\) 0 0
\(583\) −25.4447 44.0715i −1.05381 1.82525i
\(584\) 0 0
\(585\) 0.0568713 + 0.0328347i 0.00235134 + 0.00135755i
\(586\) 0 0
\(587\) 9.30074 + 9.30074i 0.383883 + 0.383883i 0.872499 0.488616i \(-0.162498\pi\)
−0.488616 + 0.872499i \(0.662498\pi\)
\(588\) 0 0
\(589\) −26.2349 + 26.2349i −1.08099 + 1.08099i
\(590\) 0 0
\(591\) −14.3498 + 24.8546i −0.590272 + 1.02238i
\(592\) 0 0
\(593\) 12.2162 7.05302i 0.501659 0.289633i −0.227739 0.973722i \(-0.573133\pi\)
0.729398 + 0.684089i \(0.239800\pi\)
\(594\) 0 0
\(595\) 4.68981 + 2.42895i 0.192264 + 0.0995774i
\(596\) 0 0
\(597\) 4.69033 17.5046i 0.191963 0.716414i
\(598\) 0 0
\(599\) 14.7397 25.5299i 0.602247 1.04312i −0.390233 0.920716i \(-0.627606\pi\)
0.992480 0.122406i \(-0.0390610\pi\)
\(600\) 0 0
\(601\) −23.6858 −0.966164 −0.483082 0.875575i \(-0.660483\pi\)
−0.483082 + 0.875575i \(0.660483\pi\)
\(602\) 0 0
\(603\) 0.143344 0.143344i 0.00583742 0.00583742i
\(604\) 0 0
\(605\) −7.29097 + 1.95361i −0.296420 + 0.0794255i
\(606\) 0 0
\(607\) 2.86300 + 4.95886i 0.116206 + 0.201274i 0.918261 0.395976i \(-0.129593\pi\)
−0.802055 + 0.597250i \(0.796260\pi\)
\(608\) 0 0
\(609\) −1.33098 0.292163i −0.0539341 0.0118391i
\(610\) 0 0
\(611\) 5.38338 20.0910i 0.217788 0.812796i
\(612\) 0 0
\(613\) 2.17496 0.582780i 0.0878459 0.0235383i −0.214628 0.976696i \(-0.568854\pi\)
0.302474 + 0.953158i \(0.402187\pi\)
\(614\) 0 0
\(615\) 6.63616i 0.267596i
\(616\) 0 0
\(617\) 12.2572i 0.493457i −0.969085 0.246729i \(-0.920644\pi\)
0.969085 0.246729i \(-0.0793556\pi\)
\(618\) 0 0
\(619\) 7.21445 1.93311i 0.289973 0.0776981i −0.110900 0.993832i \(-0.535373\pi\)
0.400873 + 0.916133i \(0.368707\pi\)
\(620\) 0 0
\(621\) −2.71077 + 10.1167i −0.108779 + 0.405970i
\(622\) 0 0
\(623\) −15.3432 14.0008i −0.614714 0.560929i
\(624\) 0 0
\(625\) 8.36824 + 14.4942i 0.334730 + 0.579769i
\(626\) 0 0
\(627\) −42.8272 + 11.4755i −1.71036 + 0.458288i
\(628\) 0 0
\(629\) −7.37954 + 7.37954i −0.294241 + 0.294241i
\(630\) 0 0
\(631\) 10.1046 0.402257 0.201129 0.979565i \(-0.435539\pi\)
0.201129 + 0.979565i \(0.435539\pi\)
\(632\) 0 0
\(633\) 0.880639 1.52531i 0.0350022 0.0606257i
\(634\) 0 0
\(635\) 2.55948 9.55211i 0.101570 0.379064i
\(636\) 0 0
\(637\) −28.2470 4.85941i −1.11919 0.192537i
\(638\) 0 0
\(639\) −0.133148 + 0.0768733i −0.00526727 + 0.00304106i
\(640\) 0 0
\(641\) 11.1392 19.2937i 0.439973 0.762056i −0.557713 0.830034i \(-0.688321\pi\)
0.997687 + 0.0679772i \(0.0216545\pi\)
\(642\) 0 0
\(643\) −2.94059 + 2.94059i −0.115965 + 0.115965i −0.762708 0.646743i \(-0.776131\pi\)
0.646743 + 0.762708i \(0.276131\pi\)
\(644\) 0 0
\(645\) −4.99159 4.99159i −0.196544 0.196544i
\(646\) 0 0
\(647\) 13.6596 + 7.88639i 0.537015 + 0.310046i 0.743869 0.668326i \(-0.232989\pi\)
−0.206853 + 0.978372i \(0.566322\pi\)
\(648\) 0 0
\(649\) −12.4030 21.4827i −0.486862 0.843269i
\(650\) 0 0
\(651\) −30.6004 + 1.39993i −1.19932 + 0.0548677i
\(652\) 0 0
\(653\) −11.8827 3.18397i −0.465007 0.124598i 0.0187058 0.999825i \(-0.494045\pi\)
−0.483713 + 0.875227i \(0.660712\pi\)
\(654\) 0 0
\(655\) 5.63152 + 3.25136i 0.220042 + 0.127041i
\(656\) 0 0
\(657\) 0.139709i 0.00545056i
\(658\) 0 0
\(659\) −22.1996 22.1996i −0.864775 0.864775i 0.127114 0.991888i \(-0.459429\pi\)
−0.991888 + 0.127114i \(0.959429\pi\)
\(660\) 0 0
\(661\) −0.253956 0.947777i −0.00987774 0.0368642i 0.960811 0.277204i \(-0.0894078\pi\)
−0.970689 + 0.240340i \(0.922741\pi\)
\(662\) 0 0
\(663\) 16.2571 9.38606i 0.631375 0.364524i
\(664\) 0 0
\(665\) −10.8936 2.39125i −0.422436 0.0927288i
\(666\) 0 0
\(667\) 0.578976 + 0.155136i 0.0224181 + 0.00600690i
\(668\) 0 0
\(669\) 5.81146 + 21.6887i 0.224684 + 0.838532i
\(670\) 0 0
\(671\) 27.7264 1.07036
\(672\) 0 0
\(673\) −28.5560 −1.10075 −0.550376 0.834917i \(-0.685516\pi\)
−0.550376 + 0.834917i \(0.685516\pi\)
\(674\) 0 0
\(675\) 5.93280 + 22.1415i 0.228354 + 0.852227i
\(676\) 0 0
\(677\) 7.13755 + 1.91250i 0.274318 + 0.0735033i 0.393356 0.919386i \(-0.371314\pi\)
−0.119037 + 0.992890i \(0.537981\pi\)
\(678\) 0 0
\(679\) −7.04372 22.1786i −0.270313 0.851135i
\(680\) 0 0
\(681\) −23.4134 + 13.5177i −0.897203 + 0.518001i
\(682\) 0 0
\(683\) −0.510463 1.90507i −0.0195323 0.0728956i 0.955472 0.295083i \(-0.0953472\pi\)
−0.975004 + 0.222187i \(0.928680\pi\)
\(684\) 0 0
\(685\) 12.3549 + 12.3549i 0.472058 + 0.472058i
\(686\) 0 0
\(687\) 24.0695i 0.918310i
\(688\) 0 0
\(689\) −39.4030 22.7493i −1.50113 0.866680i
\(690\) 0 0
\(691\) 0.216289 + 0.0579544i 0.00822801 + 0.00220469i 0.262931 0.964815i \(-0.415311\pi\)
−0.254703 + 0.967019i \(0.581978\pi\)
\(692\) 0 0
\(693\) −0.228007 0.118090i −0.00866127 0.00448586i
\(694\) 0 0
\(695\) −3.26104 5.64829i −0.123698 0.214252i
\(696\) 0 0
\(697\) 11.5235 + 6.65309i 0.436484 + 0.252004i
\(698\) 0 0
\(699\) 15.1177 + 15.1177i 0.571804 + 0.571804i
\(700\) 0 0
\(701\) 18.2761 18.2761i 0.690279 0.690279i −0.272014 0.962293i \(-0.587690\pi\)
0.962293 + 0.272014i \(0.0876898\pi\)
\(702\) 0 0
\(703\) 11.0192 19.0858i 0.415596 0.719833i
\(704\) 0 0
\(705\) 5.78711 3.34119i 0.217955 0.125837i
\(706\) 0 0
\(707\) −3.28997 5.14054i −0.123732 0.193330i
\(708\) 0 0
\(709\) 0.446105 1.66489i 0.0167538 0.0625261i −0.957043 0.289946i \(-0.906362\pi\)
0.973797 + 0.227420i \(0.0730292\pi\)
\(710\) 0 0
\(711\) −0.159808 + 0.276795i −0.00599325 + 0.0103806i
\(712\) 0 0
\(713\) 13.4743 0.504617
\(714\) 0 0
\(715\) −10.0351 + 10.0351i −0.375290 + 0.375290i
\(716\) 0 0
\(717\) 12.0920 3.24003i 0.451582 0.121001i
\(718\) 0 0
\(719\) −25.5064 44.1784i −0.951229 1.64758i −0.742771 0.669545i \(-0.766489\pi\)
−0.208457 0.978031i \(-0.566844\pi\)
\(720\) 0 0
\(721\) 24.3008 26.6309i 0.905009 0.991785i
\(722\) 0 0
\(723\) 10.7728 40.2045i 0.400644 1.49522i
\(724\) 0 0
\(725\) 1.26715 0.339532i 0.0470609 0.0126099i
\(726\) 0 0
\(727\) 31.5017i 1.16833i −0.811634 0.584166i \(-0.801422\pi\)
0.811634 0.584166i \(-0.198578\pi\)
\(728\) 0 0
\(729\) 26.8066i 0.992837i
\(730\) 0 0
\(731\) −13.6721 + 3.66342i −0.505680 + 0.135496i
\(732\) 0 0
\(733\) 10.8083 40.3371i 0.399213 1.48988i −0.415271 0.909698i \(-0.636313\pi\)
0.814484 0.580186i \(-0.197020\pi\)
\(734\) 0 0
\(735\) −5.31304 7.52090i −0.195974 0.277413i
\(736\) 0 0
\(737\) 21.9047 + 37.9400i 0.806869 + 1.39754i
\(738\) 0 0
\(739\) 17.3991 4.66207i 0.640036 0.171497i 0.0758162 0.997122i \(-0.475844\pi\)
0.564220 + 0.825625i \(0.309177\pi\)
\(740\) 0 0
\(741\) −28.0306 + 28.0306i −1.02973 + 1.02973i
\(742\) 0 0
\(743\) 23.0128 0.844256 0.422128 0.906536i \(-0.361283\pi\)
0.422128 + 0.906536i \(0.361283\pi\)
\(744\) 0 0
\(745\) −4.57156 + 7.91818i −0.167489 + 0.290100i
\(746\) 0 0
\(747\) −0.0620958 + 0.231745i −0.00227197 + 0.00847910i
\(748\) 0 0
\(749\) 12.4871 0.571271i 0.456269 0.0208738i
\(750\) 0 0
\(751\) −0.399765 + 0.230804i −0.0145876 + 0.00842217i −0.507276 0.861784i \(-0.669348\pi\)
0.492688 + 0.870206i \(0.336014\pi\)
\(752\) 0 0
\(753\) 7.51284 13.0126i 0.273783 0.474206i
\(754\) 0 0
\(755\) 0.870885 0.870885i 0.0316947 0.0316947i
\(756\) 0 0
\(757\) −5.23204 5.23204i −0.190162 0.190162i 0.605604 0.795766i \(-0.292931\pi\)
−0.795766 + 0.605604i \(0.792931\pi\)
\(758\) 0 0
\(759\) 13.9450 + 8.05117i 0.506173 + 0.292239i
\(760\) 0 0
\(761\) 10.6052 + 18.3687i 0.384437 + 0.665864i 0.991691 0.128644i \(-0.0410623\pi\)
−0.607254 + 0.794508i \(0.707729\pi\)
\(762\) 0 0
\(763\) 11.7521 + 18.3625i 0.425454 + 0.664767i
\(764\) 0 0
\(765\) 0.0408616 + 0.0109488i 0.00147735 + 0.000395856i
\(766\) 0 0
\(767\) −19.2070 11.0892i −0.693525 0.400407i
\(768\) 0 0
\(769\) 10.8533i 0.391379i −0.980666 0.195689i \(-0.937306\pi\)
0.980666 0.195689i \(-0.0626944\pi\)
\(770\) 0 0
\(771\) 28.0029 + 28.0029i 1.00850 + 1.00850i
\(772\) 0 0
\(773\) −12.5926 46.9962i −0.452924 1.69034i −0.694120 0.719859i \(-0.744206\pi\)
0.241196 0.970476i \(-0.422460\pi\)
\(774\) 0 0
\(775\) 25.5391 14.7450i 0.917390 0.529656i
\(776\) 0 0
\(777\) 17.3420 5.50766i 0.622140 0.197586i
\(778\) 0 0
\(779\) −27.1414 7.27251i −0.972441 0.260565i
\(780\) 0 0
\(781\) −8.59952 32.0938i −0.307715 1.14841i
\(782\) 0 0
\(783\) 1.53421 0.0548282
\(784\) 0 0
\(785\) −18.2049 −0.649762
\(786\) 0 0
\(787\) 3.47299 + 12.9614i 0.123799 + 0.462023i 0.999794 0.0202968i \(-0.00646112\pi\)
−0.875995 + 0.482319i \(0.839794\pi\)
\(788\) 0 0
\(789\) −17.7560 4.75770i −0.632130 0.169379i
\(790\) 0 0
\(791\) −46.6127 + 14.8038i −1.65736 + 0.526363i
\(792\) 0 0
\(793\) 21.4682 12.3946i 0.762356 0.440147i
\(794\) 0 0
\(795\) −3.78327 14.1194i −0.134179 0.500762i
\(796\) 0 0
\(797\) −6.22856 6.22856i −0.220627 0.220627i 0.588135 0.808762i \(-0.299862\pi\)
−0.808762 + 0.588135i \(0.799862\pi\)
\(798\) 0 0
\(799\) 13.3989i 0.474017i
\(800\) 0 0
\(801\) −0.144080 0.0831847i −0.00509082 0.00293919i
\(802\) 0 0
\(803\) −29.1635 7.81434i −1.02916 0.275762i
\(804\) 0 0
\(805\) 2.18342 + 3.41158i 0.0769555 + 0.120242i
\(806\) 0 0
\(807\) −9.00253 15.5928i −0.316904 0.548894i
\(808\) 0 0
\(809\) 1.49336 + 0.862190i 0.0525036 + 0.0303130i 0.526022 0.850471i \(-0.323683\pi\)
−0.473518 + 0.880784i \(0.657016\pi\)
\(810\) 0 0
\(811\) 29.5809 + 29.5809i 1.03872 + 1.03872i 0.999219 + 0.0395050i \(0.0125781\pi\)
0.0395050 + 0.999219i \(0.487422\pi\)
\(812\) 0 0
\(813\) −30.3142 + 30.3142i −1.06317 + 1.06317i
\(814\) 0 0
\(815\) −3.45058 + 5.97657i −0.120868 + 0.209350i
\(816\) 0 0
\(817\) 25.8854 14.9450i 0.905617 0.522858i
\(818\) 0 0
\(819\) −0.229333 + 0.0104917i −0.00801354 + 0.000366611i
\(820\) 0 0
\(821\) −9.77105 + 36.4661i −0.341012 + 1.27267i 0.556190 + 0.831055i \(0.312263\pi\)
−0.897202 + 0.441620i \(0.854404\pi\)
\(822\) 0 0
\(823\) −18.3778 + 31.8313i −0.640609 + 1.10957i 0.344688 + 0.938717i \(0.387985\pi\)
−0.985297 + 0.170850i \(0.945349\pi\)
\(824\) 0 0
\(825\) 35.2417 1.22696
\(826\) 0 0
\(827\) −25.1791 + 25.1791i −0.875565 + 0.875565i −0.993072 0.117507i \(-0.962510\pi\)
0.117507 + 0.993072i \(0.462510\pi\)
\(828\) 0 0
\(829\) 22.7086 6.08475i 0.788702 0.211332i 0.158084 0.987426i \(-0.449468\pi\)
0.630618 + 0.776094i \(0.282802\pi\)
\(830\) 0 0
\(831\) 9.32215 + 16.1464i 0.323382 + 0.560114i
\(832\) 0 0
\(833\) −18.3864 + 1.68584i −0.637051 + 0.0584110i
\(834\) 0 0
\(835\) 0.624362 2.33015i 0.0216069 0.0806382i
\(836\) 0 0
\(837\) 33.3133 8.92628i 1.15148 0.308537i
\(838\) 0 0
\(839\) 13.7267i 0.473899i 0.971522 + 0.236949i \(0.0761475\pi\)
−0.971522 + 0.236949i \(0.923852\pi\)
\(840\) 0 0
\(841\) 28.9122i 0.996972i
\(842\) 0 0
\(843\) 10.8525 2.90793i 0.373782 0.100154i
\(844\) 0 0
\(845\) −0.737569 + 2.75264i −0.0253731 + 0.0946938i
\(846\) 0 0
\(847\) 17.7866 19.4921i 0.611155 0.669755i
\(848\) 0 0
\(849\) 17.1244 + 29.6603i 0.587708 + 1.01794i
\(850\) 0 0
\(851\) −7.73099 + 2.07151i −0.265015 + 0.0710106i
\(852\) 0 0
\(853\) −2.88131 + 2.88131i −0.0986542 + 0.0986542i −0.754711 0.656057i \(-0.772223\pi\)
0.656057 + 0.754711i \(0.272223\pi\)
\(854\) 0 0
\(855\) −0.0893318 −0.00305508
\(856\) 0 0
\(857\) 7.75242 13.4276i 0.264817 0.458677i −0.702698 0.711488i \(-0.748022\pi\)
0.967516 + 0.252811i \(0.0813550\pi\)
\(858\) 0 0
\(859\) −6.34616 + 23.6842i −0.216528 + 0.808094i 0.769095 + 0.639135i \(0.220707\pi\)
−0.985623 + 0.168960i \(0.945959\pi\)
\(860\) 0 0
\(861\) −12.5057 19.5401i −0.426194 0.665924i
\(862\) 0 0
\(863\) −40.7734 + 23.5405i −1.38794 + 0.801329i −0.993083 0.117412i \(-0.962540\pi\)
−0.394860 + 0.918741i \(0.629207\pi\)
\(864\) 0 0
\(865\) 7.29118 12.6287i 0.247907 0.429388i
\(866\) 0 0
\(867\) −12.3433 + 12.3433i −0.419199 + 0.419199i
\(868\) 0 0
\(869\) −48.8410 48.8410i −1.65682 1.65682i
\(870\) 0 0
\(871\) 33.9210 + 19.5843i 1.14937 + 0.663589i
\(872\) 0 0
\(873\) −0.0931935 0.161416i −0.00315412 0.00546310i
\(874\) 0 0
\(875\) 16.7619 + 8.68134i 0.566655 + 0.293483i
\(876\) 0 0
\(877\) −19.5661 5.24273i −0.660701 0.177034i −0.0871389 0.996196i \(-0.527772\pi\)
−0.573563 + 0.819162i \(0.694439\pi\)
\(878\) 0 0
\(879\) −6.30964 3.64287i −0.212819 0.122871i
\(880\) 0 0
\(881\) 29.7191i 1.00126i 0.865660 + 0.500632i \(0.166899\pi\)
−0.865660 + 0.500632i \(0.833101\pi\)
\(882\) 0 0
\(883\) 10.1351 + 10.1351i 0.341074 + 0.341074i 0.856771 0.515697i \(-0.172467\pi\)
−0.515697 + 0.856771i \(0.672467\pi\)
\(884\) 0 0
\(885\) −1.84416 6.88249i −0.0619907 0.231352i
\(886\) 0 0
\(887\) 29.8863 17.2549i 1.00348 0.579362i 0.0942069 0.995553i \(-0.469968\pi\)
0.909277 + 0.416191i \(0.136635\pi\)
\(888\) 0 0
\(889\) 10.4644 + 32.9494i 0.350966 + 1.10509i
\(890\) 0 0
\(891\) 40.0920 + 10.7426i 1.34313 + 0.359891i
\(892\) 0 0
\(893\) 7.32316 + 27.3304i 0.245060 + 0.914577i
\(894\) 0 0
\(895\) 5.50881 0.184139
\(896\) 0 0
\(897\) 14.3966 0.480689
\(898\) 0 0
\(899\) −0.510848 1.90651i −0.0170377 0.0635857i
\(900\) 0 0
\(901\) −28.3107 7.58584i −0.943168 0.252721i
\(902\) 0 0
\(903\) 24.1042 + 5.29111i 0.802138 + 0.176077i
\(904\) 0 0
\(905\) 5.18714 2.99479i 0.172426 0.0995503i
\(906\) 0 0
\(907\) −2.16076 8.06405i −0.0717467 0.267762i 0.920729 0.390202i \(-0.127595\pi\)
−0.992476 + 0.122440i \(0.960928\pi\)
\(908\) 0 0
\(909\) −0.0345667 0.0345667i −0.00114650 0.00114650i
\(910\) 0 0
\(911\) 8.93090i 0.295894i 0.988995 + 0.147947i \(0.0472665\pi\)
−0.988995 + 0.147947i \(0.952734\pi\)
\(912\) 0 0
\(913\) −44.9023 25.9244i −1.48605 0.857972i
\(914\) 0 0
\(915\) 7.69273 + 2.06126i 0.254314 + 0.0681432i
\(916\) 0 0
\(917\) −22.7091 + 1.03891i −0.749919 + 0.0343080i
\(918\) 0 0
\(919\) 26.6631 + 46.1818i 0.879533 + 1.52340i 0.851854 + 0.523779i \(0.175478\pi\)
0.0276794 + 0.999617i \(0.491188\pi\)
\(920\) 0 0
\(921\) 18.3286 + 10.5820i 0.603946 + 0.348689i
\(922\) 0 0
\(923\) −21.0055 21.0055i −0.691406 0.691406i
\(924\) 0 0
\(925\) −12.3864 + 12.3864i −0.407262 + 0.407262i
\(926\) 0 0
\(927\) 0.144382 0.250076i 0.00474211 0.00821358i
\(928\) 0 0
\(929\) 33.5814 19.3882i 1.10177 0.636107i 0.165084 0.986280i \(-0.447211\pi\)
0.936685 + 0.350173i \(0.113877\pi\)
\(930\) 0 0
\(931\) 36.5824 13.4878i 1.19894 0.442045i
\(932\) 0 0
\(933\) −2.59210 + 9.67386i −0.0848617 + 0.316708i
\(934\) 0 0
\(935\) −4.57103 + 7.91725i −0.149489 + 0.258922i
\(936\) 0 0
\(937\) 14.3493 0.468771 0.234385 0.972144i \(-0.424692\pi\)
0.234385 + 0.972144i \(0.424692\pi\)
\(938\) 0 0
\(939\) −9.87228 + 9.87228i −0.322170 + 0.322170i
\(940\) 0 0
\(941\) 31.7588 8.50975i 1.03531 0.277410i 0.299141 0.954209i \(-0.403300\pi\)
0.736168 + 0.676799i \(0.236633\pi\)
\(942\) 0 0
\(943\) 5.10236 + 8.83754i 0.166156 + 0.287790i
\(944\) 0 0
\(945\) 7.65826 + 6.98820i 0.249123 + 0.227326i
\(946\) 0 0
\(947\) −13.0783 + 48.8089i −0.424988 + 1.58608i 0.338962 + 0.940800i \(0.389924\pi\)
−0.763950 + 0.645276i \(0.776742\pi\)
\(948\) 0 0
\(949\) −26.0742 + 6.98657i −0.846405 + 0.226794i
\(950\) 0 0
\(951\) 16.2167i 0.525861i
\(952\) 0 0
\(953\) 12.5441i 0.406345i 0.979143 + 0.203172i \(0.0651252\pi\)
−0.979143 + 0.203172i \(0.934875\pi\)
\(954\) 0 0
\(955\) −3.48398 + 0.933528i −0.112739 + 0.0302083i
\(956\) 0 0
\(957\) 0.610485 2.27836i 0.0197342 0.0736489i
\(958\) 0 0
\(959\) −59.6616 13.0963i −1.92657 0.422901i
\(960\) 0 0
\(961\) −6.68477 11.5784i −0.215638 0.373496i
\(962\) 0 0
\(963\) 0.0967106 0.0259135i 0.00311646 0.000835052i
\(964\) 0 0
\(965\) 2.85823 2.85823i 0.0920098 0.0920098i
\(966\) 0 0
\(967\) 19.7015 0.633559 0.316779 0.948499i \(-0.397399\pi\)
0.316779 + 0.948499i \(0.397399\pi\)
\(968\) 0 0
\(969\) −12.7681 + 22.1150i −0.410171 + 0.710437i
\(970\) 0 0
\(971\) 5.14459 19.1999i 0.165098 0.616153i −0.832930 0.553378i \(-0.813338\pi\)
0.998028 0.0627745i \(-0.0199949\pi\)
\(972\) 0 0
\(973\) 20.2462 + 10.4859i 0.649063 + 0.336163i
\(974\) 0 0
\(975\) 27.2872 15.7543i 0.873890 0.504541i
\(976\) 0 0
\(977\) −22.0366 + 38.1686i −0.705015 + 1.22112i 0.261671 + 0.965157i \(0.415726\pi\)
−0.966686 + 0.255965i \(0.917607\pi\)
\(978\) 0 0
\(979\) 25.4232 25.4232i 0.812530 0.812530i
\(980\) 0 0
\(981\) 0.123475 + 0.123475i 0.00394227 + 0.00394227i
\(982\) 0 0
\(983\) −38.9733 22.5013i −1.24306 0.717678i −0.273340 0.961917i \(-0.588129\pi\)
−0.969715 + 0.244239i \(0.921462\pi\)
\(984\) 0 0
\(985\) −6.24810 10.8220i −0.199081 0.344818i
\(986\) 0 0
\(987\) −10.7437 + 20.7438i −0.341974 + 0.660282i
\(988\) 0 0
\(989\) −10.4853 2.80953i −0.333414 0.0893379i
\(990\) 0 0
\(991\) 32.1531 + 18.5636i 1.02138 + 0.589693i 0.914503 0.404579i \(-0.132582\pi\)
0.106875 + 0.994272i \(0.465915\pi\)
\(992\) 0 0
\(993\) 8.92622i 0.283265i
\(994\) 0 0
\(995\) 5.57949 + 5.57949i 0.176882 + 0.176882i
\(996\) 0 0
\(997\) 14.9373 + 55.7466i 0.473067 + 1.76551i 0.628649 + 0.777689i \(0.283608\pi\)
−0.155582 + 0.987823i \(0.549725\pi\)
\(998\) 0 0
\(999\) −17.7415 + 10.2430i −0.561316 + 0.324076i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 448.2.z.a.143.4 56
4.3 odd 2 112.2.v.a.59.6 yes 56
7.5 odd 6 inner 448.2.z.a.271.4 56
8.3 odd 2 896.2.z.b.31.4 56
8.5 even 2 896.2.z.a.31.11 56
16.3 odd 4 inner 448.2.z.a.367.4 56
16.5 even 4 896.2.z.b.479.4 56
16.11 odd 4 896.2.z.a.479.11 56
16.13 even 4 112.2.v.a.3.5 56
28.3 even 6 784.2.j.a.587.25 56
28.11 odd 6 784.2.j.a.587.26 56
28.19 even 6 112.2.v.a.75.5 yes 56
28.23 odd 6 784.2.w.f.411.5 56
28.27 even 2 784.2.w.f.619.6 56
56.5 odd 6 896.2.z.a.159.11 56
56.19 even 6 896.2.z.b.159.4 56
112.5 odd 12 896.2.z.b.607.4 56
112.13 odd 4 784.2.w.f.227.5 56
112.19 even 12 inner 448.2.z.a.47.4 56
112.45 odd 12 784.2.j.a.195.26 56
112.61 odd 12 112.2.v.a.19.6 yes 56
112.75 even 12 896.2.z.a.607.11 56
112.93 even 12 784.2.w.f.19.6 56
112.109 even 12 784.2.j.a.195.25 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.v.a.3.5 56 16.13 even 4
112.2.v.a.19.6 yes 56 112.61 odd 12
112.2.v.a.59.6 yes 56 4.3 odd 2
112.2.v.a.75.5 yes 56 28.19 even 6
448.2.z.a.47.4 56 112.19 even 12 inner
448.2.z.a.143.4 56 1.1 even 1 trivial
448.2.z.a.271.4 56 7.5 odd 6 inner
448.2.z.a.367.4 56 16.3 odd 4 inner
784.2.j.a.195.25 56 112.109 even 12
784.2.j.a.195.26 56 112.45 odd 12
784.2.j.a.587.25 56 28.3 even 6
784.2.j.a.587.26 56 28.11 odd 6
784.2.w.f.19.6 56 112.93 even 12
784.2.w.f.227.5 56 112.13 odd 4
784.2.w.f.411.5 56 28.23 odd 6
784.2.w.f.619.6 56 28.27 even 2
896.2.z.a.31.11 56 8.5 even 2
896.2.z.a.159.11 56 56.5 odd 6
896.2.z.a.479.11 56 16.11 odd 4
896.2.z.a.607.11 56 112.75 even 12
896.2.z.b.31.4 56 8.3 odd 2
896.2.z.b.159.4 56 56.19 even 6
896.2.z.b.479.4 56 16.5 even 4
896.2.z.b.607.4 56 112.5 odd 12