L(s) = 1 | + 2-s + 3.08·3-s + 4-s + 0.580·5-s + 3.08·6-s − 1.39·7-s + 8-s + 6.53·9-s + 0.580·10-s − 3.94·11-s + 3.08·12-s − 5.15·13-s − 1.39·14-s + 1.79·15-s + 16-s − 1.15·17-s + 6.53·18-s − 6.17·19-s + 0.580·20-s − 4.30·21-s − 3.94·22-s + 8.81·23-s + 3.08·24-s − 4.66·25-s − 5.15·26-s + 10.9·27-s − 1.39·28-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1.78·3-s + 0.5·4-s + 0.259·5-s + 1.26·6-s − 0.527·7-s + 0.353·8-s + 2.17·9-s + 0.183·10-s − 1.19·11-s + 0.891·12-s − 1.43·13-s − 0.372·14-s + 0.462·15-s + 0.250·16-s − 0.279·17-s + 1.53·18-s − 1.41·19-s + 0.129·20-s − 0.940·21-s − 0.841·22-s + 1.83·23-s + 0.630·24-s − 0.932·25-s − 1.01·26-s + 2.09·27-s − 0.263·28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 446 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 446 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.307805906\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.307805906\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 223 | \( 1 + T \) |
good | 3 | \( 1 - 3.08T + 3T^{2} \) |
| 5 | \( 1 - 0.580T + 5T^{2} \) |
| 7 | \( 1 + 1.39T + 7T^{2} \) |
| 11 | \( 1 + 3.94T + 11T^{2} \) |
| 13 | \( 1 + 5.15T + 13T^{2} \) |
| 17 | \( 1 + 1.15T + 17T^{2} \) |
| 19 | \( 1 + 6.17T + 19T^{2} \) |
| 23 | \( 1 - 8.81T + 23T^{2} \) |
| 29 | \( 1 + 3.09T + 29T^{2} \) |
| 31 | \( 1 - 4.25T + 31T^{2} \) |
| 37 | \( 1 - 11.3T + 37T^{2} \) |
| 41 | \( 1 + 2.30T + 41T^{2} \) |
| 43 | \( 1 - 6.45T + 43T^{2} \) |
| 47 | \( 1 + 4.58T + 47T^{2} \) |
| 53 | \( 1 - 7.69T + 53T^{2} \) |
| 59 | \( 1 + 8.70T + 59T^{2} \) |
| 61 | \( 1 - 14.9T + 61T^{2} \) |
| 67 | \( 1 - 7.23T + 67T^{2} \) |
| 71 | \( 1 - 8.42T + 71T^{2} \) |
| 73 | \( 1 + 4.40T + 73T^{2} \) |
| 79 | \( 1 - 2.59T + 79T^{2} \) |
| 83 | \( 1 - 6.07T + 83T^{2} \) |
| 89 | \( 1 - 2.89T + 89T^{2} \) |
| 97 | \( 1 + 3.84T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.99816777677778183682577764239, −9.967945660639488812948283253881, −9.389266233963604015580702080752, −8.258321618489435340928531376173, −7.52159940440024632276474160541, −6.61137209271669155448682906607, −5.09432604336049897791290068009, −4.07677474924954531343922832922, −2.77988135316238139202440671671, −2.33212512951776523610330376811,
2.33212512951776523610330376811, 2.77988135316238139202440671671, 4.07677474924954531343922832922, 5.09432604336049897791290068009, 6.61137209271669155448682906607, 7.52159940440024632276474160541, 8.258321618489435340928531376173, 9.389266233963604015580702080752, 9.967945660639488812948283253881, 10.99816777677778183682577764239