Properties

Label 8-444e4-1.1-c1e4-0-9
Degree $8$
Conductor $38862602496$
Sign $1$
Analytic cond. $157.993$
Root an. cond. $1.88291$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·3-s + 4·7-s + 10·9-s − 8·11-s − 16·21-s + 6·25-s − 20·27-s + 32·33-s + 8·41-s + 16·47-s − 8·49-s + 8·53-s + 40·63-s − 4·67-s + 4·73-s − 24·75-s − 32·77-s + 35·81-s + 24·83-s − 80·99-s + 16·101-s − 8·107-s + 36·121-s − 32·123-s + 127-s + 131-s + 137-s + ⋯
L(s)  = 1  − 2.30·3-s + 1.51·7-s + 10/3·9-s − 2.41·11-s − 3.49·21-s + 6/5·25-s − 3.84·27-s + 5.57·33-s + 1.24·41-s + 2.33·47-s − 8/7·49-s + 1.09·53-s + 5.03·63-s − 0.488·67-s + 0.468·73-s − 2.77·75-s − 3.64·77-s + 35/9·81-s + 2.63·83-s − 8.04·99-s + 1.59·101-s − 0.773·107-s + 3.27·121-s − 2.88·123-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{4} \cdot 37^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{4} \cdot 37^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 3^{4} \cdot 37^{4}\)
Sign: $1$
Analytic conductor: \(157.993\)
Root analytic conductor: \(1.88291\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 3^{4} \cdot 37^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.060360515\)
\(L(\frac12)\) \(\approx\) \(1.060360515\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3$C_1$ \( ( 1 + T )^{4} \)
37$C_2^2$ \( 1 + 54 T^{2} + p^{2} T^{4} \)
good5$D_4\times C_2$ \( 1 - 6 T^{2} + 14 T^{4} - 6 p^{2} T^{6} + p^{4} T^{8} \) 4.5.a_ag_a_o
7$D_{4}$ \( ( 1 - 2 T + 10 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \) 4.7.ae_y_acq_ju
11$C_4$ \( ( 1 + 4 T + 6 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \) 4.11.i_bc_fg_yg
13$D_4\times C_2$ \( 1 - 28 T^{2} + 454 T^{4} - 28 p^{2} T^{6} + p^{4} T^{8} \) 4.13.a_abc_a_rm
17$D_4\times C_2$ \( 1 - 14 T^{2} + 382 T^{4} - 14 p^{2} T^{6} + p^{4} T^{8} \) 4.17.a_ao_a_os
19$D_4\times C_2$ \( 1 - 52 T^{2} + 1318 T^{4} - 52 p^{2} T^{6} + p^{4} T^{8} \) 4.19.a_aca_a_bys
23$D_4\times C_2$ \( 1 + 34 T^{2} + 1222 T^{4} + 34 p^{2} T^{6} + p^{4} T^{8} \) 4.23.a_bi_a_bva
29$D_4\times C_2$ \( 1 - 30 T^{2} + 1502 T^{4} - 30 p^{2} T^{6} + p^{4} T^{8} \) 4.29.a_abe_a_cfu
31$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \) 4.31.a_abs_a_doo
41$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \) 4.41.ai_hg_abnc_rwg
43$C_2^2$ \( ( 1 - 78 T^{2} + p^{2} T^{4} )^{2} \) 4.43.a_aga_a_omg
47$C_2$ \( ( 1 - 4 T + p T^{2} )^{4} \) 4.47.aq_ky_adsq_bhis
53$D_{4}$ \( ( 1 - 4 T + 30 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \) 4.53.ai_cy_azo_mdy
59$D_4\times C_2$ \( 1 - 230 T^{2} + 20182 T^{4} - 230 p^{2} T^{6} + p^{4} T^{8} \) 4.59.a_aiw_a_bdwg
61$C_2^2$ \( ( 1 - 90 T^{2} + p^{2} T^{4} )^{2} \) 4.61.a_agy_a_wzu
67$D_{4}$ \( ( 1 + 2 T + 90 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \) 4.67.e_hc_ye_babm
71$C_2^2$ \( ( 1 + 62 T^{2} + p^{2} T^{4} )^{2} \) 4.71.a_eu_a_upq
73$D_{4}$ \( ( 1 - 2 T + 142 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \) 4.73.ae_lc_abhc_buly
79$D_4\times C_2$ \( 1 + 28 T^{2} + 6198 T^{4} + 28 p^{2} T^{6} + p^{4} T^{8} \) 4.79.a_bc_a_jek
83$D_{4}$ \( ( 1 - 12 T + 182 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \) 4.83.ay_to_ajkq_eati
89$D_4\times C_2$ \( 1 - 230 T^{2} + 28942 T^{4} - 230 p^{2} T^{6} + p^{4} T^{8} \) 4.89.a_aiw_a_bqve
97$D_4\times C_2$ \( 1 - 172 T^{2} + 19734 T^{4} - 172 p^{2} T^{6} + p^{4} T^{8} \) 4.97.a_agq_a_bdfa
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.943292877590901717091025525057, −7.84278729022676306832511203184, −7.48875327155824554270782721120, −7.29850769993290821048598606178, −7.08412817060963723399664858011, −6.69309701469450201278367063601, −6.65258134323036059923835904525, −6.22526793826310887430262328071, −5.76411427351526218026164123328, −5.72459682183535992472364605042, −5.60720483243913277086941191967, −5.24761690332822063716149584052, −5.06406068454349665520706912871, −4.78458778129742216141964141900, −4.46177293159658183100883153492, −4.45705201642717063481790554703, −4.14919994336058509881377221853, −3.39839459191073237504345175532, −3.29315263553553006769799925086, −2.76417633886699127830832873462, −2.25518090008552879901056756309, −2.06526684004951562104115951224, −1.59865815106246346437730187120, −0.74837225273034262343388348330, −0.66836703962159163295753653542, 0.66836703962159163295753653542, 0.74837225273034262343388348330, 1.59865815106246346437730187120, 2.06526684004951562104115951224, 2.25518090008552879901056756309, 2.76417633886699127830832873462, 3.29315263553553006769799925086, 3.39839459191073237504345175532, 4.14919994336058509881377221853, 4.45705201642717063481790554703, 4.46177293159658183100883153492, 4.78458778129742216141964141900, 5.06406068454349665520706912871, 5.24761690332822063716149584052, 5.60720483243913277086941191967, 5.72459682183535992472364605042, 5.76411427351526218026164123328, 6.22526793826310887430262328071, 6.65258134323036059923835904525, 6.69309701469450201278367063601, 7.08412817060963723399664858011, 7.29850769993290821048598606178, 7.48875327155824554270782721120, 7.84278729022676306832511203184, 7.943292877590901717091025525057

Graph of the $Z$-function along the critical line