L(s) = 1 | + (−0.809 − 2.48i)3-s + (1.30 + 0.951i)5-s + (−1.19 + 3.66i)7-s + (−3.11 + 2.26i)9-s + (1.23 − 3.07i)11-s + (−1.92 + 1.40i)13-s + (1.30 − 4.02i)15-s + (−1.92 − 1.40i)17-s + (1.19 + 3.66i)19-s + 10.0·21-s − 2.47·23-s + (−0.736 − 2.26i)25-s + (1.80 + 1.31i)27-s + (2.66 − 8.19i)29-s + (−0.690 + 0.502i)31-s + ⋯ |
L(s) = 1 | + (−0.467 − 1.43i)3-s + (0.585 + 0.425i)5-s + (−0.450 + 1.38i)7-s + (−1.03 + 0.755i)9-s + (0.372 − 0.927i)11-s + (−0.534 + 0.388i)13-s + (0.337 − 1.04i)15-s + (−0.467 − 0.339i)17-s + (0.273 + 0.840i)19-s + 2.20·21-s − 0.515·23-s + (−0.147 − 0.453i)25-s + (0.348 + 0.252i)27-s + (0.494 − 1.52i)29-s + (−0.124 + 0.0901i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 44 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.751 + 0.659i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 44 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.751 + 0.659i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.685708 - 0.258039i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.685708 - 0.258039i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 11 | \( 1 + (-1.23 + 3.07i)T \) |
good | 3 | \( 1 + (0.809 + 2.48i)T + (-2.42 + 1.76i)T^{2} \) |
| 5 | \( 1 + (-1.30 - 0.951i)T + (1.54 + 4.75i)T^{2} \) |
| 7 | \( 1 + (1.19 - 3.66i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (1.92 - 1.40i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (1.92 + 1.40i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-1.19 - 3.66i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + 2.47T + 23T^{2} \) |
| 29 | \( 1 + (-2.66 + 8.19i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (0.690 - 0.502i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (0.572 - 1.76i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (-2.66 - 8.19i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + 43T^{2} \) |
| 47 | \( 1 + (-0.427 - 1.31i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-3.30 + 2.40i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-0.336 + 1.03i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (1.92 + 1.40i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 - 12.9T + 67T^{2} \) |
| 71 | \( 1 + (-5.16 - 3.75i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (0.281 - 0.865i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-5.78 + 4.20i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (10.5 + 7.66i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 - 0.472T + 89T^{2} \) |
| 97 | \( 1 + (-11.7 + 8.55i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.91983111659509013433208729680, −14.36820429288925606211253232519, −13.40522188650574785940462430679, −12.23148951211053315905871959640, −11.54611805486196835656903355372, −9.664287876344252573961175056223, −8.178532551950523448280781131337, −6.51488911598948432479578009822, −5.85069673653490757538201885893, −2.38029506608655636628223600595,
3.99409198562467247986882310945, 5.17794652531498860175810295267, 7.03567637021931389353393387013, 9.241595476930417866938762169999, 10.07284856937093834242920925634, 10.90878761946003941956126427944, 12.59777131567517146311068589982, 13.87744701164209751287805826993, 15.14444277766895215778844758659, 16.19215577536246413583005949780