Properties

Label 44.2.e.a.25.1
Level $44$
Weight $2$
Character 44.25
Analytic conductor $0.351$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [44,2,Mod(5,44)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(44, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("44.5"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 44 = 2^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 44.e (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.351341768894\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 25.1
Root \(0.809017 - 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 44.25
Dual form 44.2.e.a.37.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.809017 - 2.48990i) q^{3} +(1.30902 + 0.951057i) q^{5} +(-1.19098 + 3.66547i) q^{7} +(-3.11803 + 2.26538i) q^{9} +(1.23607 - 3.07768i) q^{11} +(-1.92705 + 1.40008i) q^{13} +(1.30902 - 4.02874i) q^{15} +(-1.92705 - 1.40008i) q^{17} +(1.19098 + 3.66547i) q^{19} +10.0902 q^{21} -2.47214 q^{23} +(-0.736068 - 2.26538i) q^{25} +(1.80902 + 1.31433i) q^{27} +(2.66312 - 8.19624i) q^{29} +(-0.690983 + 0.502029i) q^{31} +(-8.66312 - 0.587785i) q^{33} +(-5.04508 + 3.66547i) q^{35} +(-0.572949 + 1.76336i) q^{37} +(5.04508 + 3.66547i) q^{39} +(2.66312 + 8.19624i) q^{41} -6.23607 q^{45} +(0.427051 + 1.31433i) q^{47} +(-6.35410 - 4.61653i) q^{49} +(-1.92705 + 5.93085i) q^{51} +(3.30902 - 2.40414i) q^{53} +(4.54508 - 2.85317i) q^{55} +(8.16312 - 5.93085i) q^{57} +(0.336881 - 1.03681i) q^{59} +(-1.92705 - 1.40008i) q^{61} +(-4.59017 - 14.1271i) q^{63} -3.85410 q^{65} +12.9443 q^{67} +(2.00000 + 6.15537i) q^{69} +(5.16312 + 3.75123i) q^{71} +(-0.281153 + 0.865300i) q^{73} +(-5.04508 + 3.66547i) q^{75} +(9.80902 + 8.19624i) q^{77} +(5.78115 - 4.20025i) q^{79} +(-1.76393 + 5.42882i) q^{81} +(-10.5451 - 7.66145i) q^{83} +(-1.19098 - 3.66547i) q^{85} -22.5623 q^{87} +0.472136 q^{89} +(-2.83688 - 8.73102i) q^{91} +(1.80902 + 1.31433i) q^{93} +(-1.92705 + 5.93085i) q^{95} +(11.7812 - 8.55951i) q^{97} +(3.11803 + 12.3965i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{3} + 3 q^{5} - 7 q^{7} - 8 q^{9} - 4 q^{11} - q^{13} + 3 q^{15} - q^{17} + 7 q^{19} + 18 q^{21} + 8 q^{23} + 6 q^{25} + 5 q^{27} - 5 q^{29} - 5 q^{31} - 19 q^{33} - 9 q^{35} - 9 q^{37} + 9 q^{39}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/44\mathbb{Z}\right)^\times\).

\(n\) \(13\) \(23\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.809017 2.48990i −0.467086 1.43754i −0.856340 0.516413i \(-0.827267\pi\)
0.389254 0.921131i \(-0.372733\pi\)
\(4\) 0 0
\(5\) 1.30902 + 0.951057i 0.585410 + 0.425325i 0.840670 0.541547i \(-0.182161\pi\)
−0.255260 + 0.966872i \(0.582161\pi\)
\(6\) 0 0
\(7\) −1.19098 + 3.66547i −0.450149 + 1.38542i 0.426587 + 0.904446i \(0.359716\pi\)
−0.876737 + 0.480971i \(0.840284\pi\)
\(8\) 0 0
\(9\) −3.11803 + 2.26538i −1.03934 + 0.755128i
\(10\) 0 0
\(11\) 1.23607 3.07768i 0.372689 0.927957i
\(12\) 0 0
\(13\) −1.92705 + 1.40008i −0.534468 + 0.388314i −0.822026 0.569449i \(-0.807156\pi\)
0.287559 + 0.957763i \(0.407156\pi\)
\(14\) 0 0
\(15\) 1.30902 4.02874i 0.337987 1.04022i
\(16\) 0 0
\(17\) −1.92705 1.40008i −0.467379 0.339570i 0.329040 0.944316i \(-0.393275\pi\)
−0.796419 + 0.604746i \(0.793275\pi\)
\(18\) 0 0
\(19\) 1.19098 + 3.66547i 0.273230 + 0.840916i 0.989682 + 0.143280i \(0.0457649\pi\)
−0.716452 + 0.697636i \(0.754235\pi\)
\(20\) 0 0
\(21\) 10.0902 2.20186
\(22\) 0 0
\(23\) −2.47214 −0.515476 −0.257738 0.966215i \(-0.582977\pi\)
−0.257738 + 0.966215i \(0.582977\pi\)
\(24\) 0 0
\(25\) −0.736068 2.26538i −0.147214 0.453077i
\(26\) 0 0
\(27\) 1.80902 + 1.31433i 0.348145 + 0.252942i
\(28\) 0 0
\(29\) 2.66312 8.19624i 0.494529 1.52200i −0.323161 0.946344i \(-0.604746\pi\)
0.817690 0.575659i \(-0.195254\pi\)
\(30\) 0 0
\(31\) −0.690983 + 0.502029i −0.124104 + 0.0901670i −0.648106 0.761550i \(-0.724439\pi\)
0.524002 + 0.851717i \(0.324439\pi\)
\(32\) 0 0
\(33\) −8.66312 0.587785i −1.50806 0.102320i
\(34\) 0 0
\(35\) −5.04508 + 3.66547i −0.852775 + 0.619577i
\(36\) 0 0
\(37\) −0.572949 + 1.76336i −0.0941922 + 0.289894i −0.987042 0.160460i \(-0.948702\pi\)
0.892850 + 0.450354i \(0.148702\pi\)
\(38\) 0 0
\(39\) 5.04508 + 3.66547i 0.807860 + 0.586945i
\(40\) 0 0
\(41\) 2.66312 + 8.19624i 0.415909 + 1.28004i 0.911435 + 0.411444i \(0.134975\pi\)
−0.495526 + 0.868593i \(0.665025\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) −6.23607 −0.929618
\(46\) 0 0
\(47\) 0.427051 + 1.31433i 0.0622918 + 0.191714i 0.977359 0.211586i \(-0.0678629\pi\)
−0.915068 + 0.403301i \(0.867863\pi\)
\(48\) 0 0
\(49\) −6.35410 4.61653i −0.907729 0.659504i
\(50\) 0 0
\(51\) −1.92705 + 5.93085i −0.269841 + 0.830486i
\(52\) 0 0
\(53\) 3.30902 2.40414i 0.454528 0.330234i −0.336853 0.941557i \(-0.609362\pi\)
0.791381 + 0.611323i \(0.209362\pi\)
\(54\) 0 0
\(55\) 4.54508 2.85317i 0.612859 0.384721i
\(56\) 0 0
\(57\) 8.16312 5.93085i 1.08123 0.785561i
\(58\) 0 0
\(59\) 0.336881 1.03681i 0.0438582 0.134982i −0.926730 0.375729i \(-0.877392\pi\)
0.970588 + 0.240747i \(0.0773924\pi\)
\(60\) 0 0
\(61\) −1.92705 1.40008i −0.246734 0.179262i 0.457544 0.889187i \(-0.348729\pi\)
−0.704278 + 0.709924i \(0.748729\pi\)
\(62\) 0 0
\(63\) −4.59017 14.1271i −0.578307 1.77985i
\(64\) 0 0
\(65\) −3.85410 −0.478043
\(66\) 0 0
\(67\) 12.9443 1.58139 0.790697 0.612207i \(-0.209718\pi\)
0.790697 + 0.612207i \(0.209718\pi\)
\(68\) 0 0
\(69\) 2.00000 + 6.15537i 0.240772 + 0.741019i
\(70\) 0 0
\(71\) 5.16312 + 3.75123i 0.612749 + 0.445189i 0.850381 0.526167i \(-0.176371\pi\)
−0.237632 + 0.971355i \(0.576371\pi\)
\(72\) 0 0
\(73\) −0.281153 + 0.865300i −0.0329065 + 0.101276i −0.966161 0.257941i \(-0.916956\pi\)
0.933254 + 0.359217i \(0.116956\pi\)
\(74\) 0 0
\(75\) −5.04508 + 3.66547i −0.582556 + 0.423252i
\(76\) 0 0
\(77\) 9.80902 + 8.19624i 1.11784 + 0.934048i
\(78\) 0 0
\(79\) 5.78115 4.20025i 0.650431 0.472565i −0.212987 0.977055i \(-0.568319\pi\)
0.863418 + 0.504490i \(0.168319\pi\)
\(80\) 0 0
\(81\) −1.76393 + 5.42882i −0.195992 + 0.603203i
\(82\) 0 0
\(83\) −10.5451 7.66145i −1.15747 0.840954i −0.168017 0.985784i \(-0.553736\pi\)
−0.989456 + 0.144830i \(0.953736\pi\)
\(84\) 0 0
\(85\) −1.19098 3.66547i −0.129180 0.397576i
\(86\) 0 0
\(87\) −22.5623 −2.41893
\(88\) 0 0
\(89\) 0.472136 0.0500463 0.0250232 0.999687i \(-0.492034\pi\)
0.0250232 + 0.999687i \(0.492034\pi\)
\(90\) 0 0
\(91\) −2.83688 8.73102i −0.297386 0.915260i
\(92\) 0 0
\(93\) 1.80902 + 1.31433i 0.187586 + 0.136289i
\(94\) 0 0
\(95\) −1.92705 + 5.93085i −0.197711 + 0.608493i
\(96\) 0 0
\(97\) 11.7812 8.55951i 1.19619 0.869086i 0.202290 0.979326i \(-0.435162\pi\)
0.993905 + 0.110239i \(0.0351617\pi\)
\(98\) 0 0
\(99\) 3.11803 + 12.3965i 0.313374 + 1.24589i
\(100\) 0 0
\(101\) −14.3992 + 10.4616i −1.43277 + 1.04097i −0.443281 + 0.896383i \(0.646185\pi\)
−0.989492 + 0.144587i \(0.953815\pi\)
\(102\) 0 0
\(103\) −2.42705 + 7.46969i −0.239144 + 0.736011i 0.757400 + 0.652951i \(0.226469\pi\)
−0.996545 + 0.0830599i \(0.973531\pi\)
\(104\) 0 0
\(105\) 13.2082 + 9.59632i 1.28899 + 0.936505i
\(106\) 0 0
\(107\) −3.57295 10.9964i −0.345410 1.06306i −0.961364 0.275281i \(-0.911229\pi\)
0.615954 0.787782i \(-0.288771\pi\)
\(108\) 0 0
\(109\) −12.4721 −1.19461 −0.597307 0.802013i \(-0.703763\pi\)
−0.597307 + 0.802013i \(0.703763\pi\)
\(110\) 0 0
\(111\) 4.85410 0.460731
\(112\) 0 0
\(113\) 5.42705 + 16.7027i 0.510534 + 1.57126i 0.791264 + 0.611475i \(0.209424\pi\)
−0.280730 + 0.959787i \(0.590576\pi\)
\(114\) 0 0
\(115\) −3.23607 2.35114i −0.301765 0.219245i
\(116\) 0 0
\(117\) 2.83688 8.73102i 0.262270 0.807183i
\(118\) 0 0
\(119\) 7.42705 5.39607i 0.680837 0.494657i
\(120\) 0 0
\(121\) −7.94427 7.60845i −0.722207 0.691677i
\(122\) 0 0
\(123\) 18.2533 13.2618i 1.64584 1.19578i
\(124\) 0 0
\(125\) 3.69098 11.3597i 0.330132 1.01604i
\(126\) 0 0
\(127\) 1.92705 + 1.40008i 0.170998 + 0.124237i 0.669993 0.742368i \(-0.266297\pi\)
−0.498995 + 0.866605i \(0.666297\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 9.52786 0.832453 0.416227 0.909261i \(-0.363352\pi\)
0.416227 + 0.909261i \(0.363352\pi\)
\(132\) 0 0
\(133\) −14.8541 −1.28801
\(134\) 0 0
\(135\) 1.11803 + 3.44095i 0.0962250 + 0.296150i
\(136\) 0 0
\(137\) −11.1631 8.11048i −0.953730 0.692925i −0.00204358 0.999998i \(-0.500650\pi\)
−0.951686 + 0.307073i \(0.900650\pi\)
\(138\) 0 0
\(139\) 3.57295 10.9964i 0.303054 0.932703i −0.677343 0.735668i \(-0.736869\pi\)
0.980396 0.197035i \(-0.0631314\pi\)
\(140\) 0 0
\(141\) 2.92705 2.12663i 0.246502 0.179094i
\(142\) 0 0
\(143\) 1.92705 + 7.66145i 0.161148 + 0.640683i
\(144\) 0 0
\(145\) 11.2812 8.19624i 0.936849 0.680660i
\(146\) 0 0
\(147\) −6.35410 + 19.5559i −0.524077 + 1.61294i
\(148\) 0 0
\(149\) −1.92705 1.40008i −0.157870 0.114699i 0.506046 0.862507i \(-0.331107\pi\)
−0.663916 + 0.747807i \(0.731107\pi\)
\(150\) 0 0
\(151\) 5.95492 + 18.3273i 0.484604 + 1.49146i 0.832553 + 0.553945i \(0.186878\pi\)
−0.347949 + 0.937513i \(0.613122\pi\)
\(152\) 0 0
\(153\) 9.18034 0.742186
\(154\) 0 0
\(155\) −1.38197 −0.111002
\(156\) 0 0
\(157\) 5.42705 + 16.7027i 0.433126 + 1.33302i 0.894995 + 0.446076i \(0.147179\pi\)
−0.461869 + 0.886948i \(0.652821\pi\)
\(158\) 0 0
\(159\) −8.66312 6.29412i −0.687030 0.499157i
\(160\) 0 0
\(161\) 2.94427 9.06154i 0.232041 0.714149i
\(162\) 0 0
\(163\) −9.16312 + 6.65740i −0.717711 + 0.521447i −0.885652 0.464350i \(-0.846288\pi\)
0.167941 + 0.985797i \(0.446288\pi\)
\(164\) 0 0
\(165\) −10.7812 9.00854i −0.839312 0.701314i
\(166\) 0 0
\(167\) −14.3992 + 10.4616i −1.11424 + 0.809545i −0.983326 0.181849i \(-0.941792\pi\)
−0.130916 + 0.991393i \(0.541792\pi\)
\(168\) 0 0
\(169\) −2.26393 + 6.96767i −0.174149 + 0.535974i
\(170\) 0 0
\(171\) −12.0172 8.73102i −0.918980 0.667678i
\(172\) 0 0
\(173\) −2.10081 6.46564i −0.159722 0.491573i 0.838887 0.544306i \(-0.183207\pi\)
−0.998609 + 0.0527326i \(0.983207\pi\)
\(174\) 0 0
\(175\) 9.18034 0.693968
\(176\) 0 0
\(177\) −2.85410 −0.214527
\(178\) 0 0
\(179\) −0.809017 2.48990i −0.0604688 0.186104i 0.916259 0.400586i \(-0.131194\pi\)
−0.976728 + 0.214482i \(0.931194\pi\)
\(180\) 0 0
\(181\) 1.30902 + 0.951057i 0.0972985 + 0.0706915i 0.635371 0.772207i \(-0.280847\pi\)
−0.538072 + 0.842899i \(0.680847\pi\)
\(182\) 0 0
\(183\) −1.92705 + 5.93085i −0.142452 + 0.438421i
\(184\) 0 0
\(185\) −2.42705 + 1.76336i −0.178440 + 0.129644i
\(186\) 0 0
\(187\) −6.69098 + 4.20025i −0.489293 + 0.307153i
\(188\) 0 0
\(189\) −6.97214 + 5.06555i −0.507148 + 0.368465i
\(190\) 0 0
\(191\) 8.04508 24.7602i 0.582122 1.79159i −0.0284112 0.999596i \(-0.509045\pi\)
0.610533 0.791991i \(-0.290955\pi\)
\(192\) 0 0
\(193\) 18.2533 + 13.2618i 1.31390 + 0.954605i 0.999987 + 0.00515308i \(0.00164028\pi\)
0.313914 + 0.949451i \(0.398360\pi\)
\(194\) 0 0
\(195\) 3.11803 + 9.59632i 0.223287 + 0.687207i
\(196\) 0 0
\(197\) −2.94427 −0.209771 −0.104885 0.994484i \(-0.533448\pi\)
−0.104885 + 0.994484i \(0.533448\pi\)
\(198\) 0 0
\(199\) −0.944272 −0.0669377 −0.0334688 0.999440i \(-0.510655\pi\)
−0.0334688 + 0.999440i \(0.510655\pi\)
\(200\) 0 0
\(201\) −10.4721 32.2299i −0.738648 2.27332i
\(202\) 0 0
\(203\) 26.8713 + 19.5232i 1.88600 + 1.37026i
\(204\) 0 0
\(205\) −4.30902 + 13.2618i −0.300955 + 0.926244i
\(206\) 0 0
\(207\) 7.70820 5.60034i 0.535757 0.389250i
\(208\) 0 0
\(209\) 12.7533 + 0.865300i 0.882163 + 0.0598540i
\(210\) 0 0
\(211\) −9.63525 + 7.00042i −0.663318 + 0.481929i −0.867782 0.496945i \(-0.834455\pi\)
0.204464 + 0.978874i \(0.434455\pi\)
\(212\) 0 0
\(213\) 5.16312 15.8904i 0.353771 1.08880i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −1.01722 3.13068i −0.0690535 0.212525i
\(218\) 0 0
\(219\) 2.38197 0.160958
\(220\) 0 0
\(221\) 5.67376 0.381659
\(222\) 0 0
\(223\) −3.75329 11.5514i −0.251339 0.773541i −0.994529 0.104461i \(-0.966688\pi\)
0.743190 0.669080i \(-0.233312\pi\)
\(224\) 0 0
\(225\) 7.42705 + 5.39607i 0.495137 + 0.359738i
\(226\) 0 0
\(227\) 1.75329 5.39607i 0.116370 0.358150i −0.875860 0.482565i \(-0.839705\pi\)
0.992230 + 0.124415i \(0.0397054\pi\)
\(228\) 0 0
\(229\) −13.1631 + 9.56357i −0.869843 + 0.631978i −0.930545 0.366178i \(-0.880666\pi\)
0.0607015 + 0.998156i \(0.480666\pi\)
\(230\) 0 0
\(231\) 12.4721 31.0543i 0.820606 2.04323i
\(232\) 0 0
\(233\) −1.92705 + 1.40008i −0.126245 + 0.0917226i −0.649116 0.760689i \(-0.724861\pi\)
0.522871 + 0.852412i \(0.324861\pi\)
\(234\) 0 0
\(235\) −0.690983 + 2.12663i −0.0450748 + 0.138726i
\(236\) 0 0
\(237\) −15.1353 10.9964i −0.983140 0.714293i
\(238\) 0 0
\(239\) −3.57295 10.9964i −0.231115 0.711298i −0.997613 0.0690519i \(-0.978003\pi\)
0.766498 0.642246i \(-0.221997\pi\)
\(240\) 0 0
\(241\) 12.4721 0.803401 0.401700 0.915771i \(-0.368419\pi\)
0.401700 + 0.915771i \(0.368419\pi\)
\(242\) 0 0
\(243\) 21.6525 1.38901
\(244\) 0 0
\(245\) −3.92705 12.0862i −0.250890 0.772160i
\(246\) 0 0
\(247\) −7.42705 5.39607i −0.472572 0.343344i
\(248\) 0 0
\(249\) −10.5451 + 32.4544i −0.668268 + 2.05672i
\(250\) 0 0
\(251\) −20.8713 + 15.1639i −1.31739 + 0.957137i −0.317425 + 0.948283i \(0.602818\pi\)
−0.999961 + 0.00885387i \(0.997182\pi\)
\(252\) 0 0
\(253\) −3.05573 + 7.60845i −0.192112 + 0.478339i
\(254\) 0 0
\(255\) −8.16312 + 5.93085i −0.511194 + 0.371404i
\(256\) 0 0
\(257\) −1.51722 + 4.66953i −0.0946416 + 0.291277i −0.987160 0.159734i \(-0.948936\pi\)
0.892518 + 0.451011i \(0.148936\pi\)
\(258\) 0 0
\(259\) −5.78115 4.20025i −0.359223 0.260991i
\(260\) 0 0
\(261\) 10.2639 + 31.5891i 0.635321 + 1.95532i
\(262\) 0 0
\(263\) 5.88854 0.363103 0.181552 0.983381i \(-0.441888\pi\)
0.181552 + 0.983381i \(0.441888\pi\)
\(264\) 0 0
\(265\) 6.61803 0.406543
\(266\) 0 0
\(267\) −0.381966 1.17557i −0.0233759 0.0719437i
\(268\) 0 0
\(269\) 19.4894 + 14.1598i 1.18829 + 0.863341i 0.993082 0.117421i \(-0.0374628\pi\)
0.195205 + 0.980762i \(0.437463\pi\)
\(270\) 0 0
\(271\) −5.95492 + 18.3273i −0.361735 + 1.11331i 0.590265 + 0.807210i \(0.299023\pi\)
−0.952000 + 0.306097i \(0.900977\pi\)
\(272\) 0 0
\(273\) −19.4443 + 14.1271i −1.17682 + 0.855010i
\(274\) 0 0
\(275\) −7.88197 0.534785i −0.475300 0.0322487i
\(276\) 0 0
\(277\) 18.2533 13.2618i 1.09673 0.796824i 0.116210 0.993225i \(-0.462925\pi\)
0.980524 + 0.196401i \(0.0629254\pi\)
\(278\) 0 0
\(279\) 1.01722 3.13068i 0.0608994 0.187429i
\(280\) 0 0
\(281\) −22.1074 16.0620i −1.31882 0.958176i −0.999946 0.0103778i \(-0.996697\pi\)
−0.318870 0.947798i \(-0.603303\pi\)
\(282\) 0 0
\(283\) −3.57295 10.9964i −0.212390 0.653669i −0.999329 0.0366375i \(-0.988335\pi\)
0.786939 0.617031i \(-0.211665\pi\)
\(284\) 0 0
\(285\) 16.3262 0.967083
\(286\) 0 0
\(287\) −33.2148 −1.96061
\(288\) 0 0
\(289\) −3.50000 10.7719i −0.205882 0.633641i
\(290\) 0 0
\(291\) −30.8435 22.4091i −1.80808 1.31364i
\(292\) 0 0
\(293\) 2.66312 8.19624i 0.155581 0.478829i −0.842638 0.538480i \(-0.818999\pi\)
0.998219 + 0.0596508i \(0.0189987\pi\)
\(294\) 0 0
\(295\) 1.42705 1.03681i 0.0830861 0.0603656i
\(296\) 0 0
\(297\) 6.28115 3.94298i 0.364469 0.228795i
\(298\) 0 0
\(299\) 4.76393 3.46120i 0.275505 0.200166i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 37.6976 + 27.3889i 2.16567 + 1.57345i
\(304\) 0 0
\(305\) −1.19098 3.66547i −0.0681955 0.209884i
\(306\) 0 0
\(307\) 9.52786 0.543784 0.271892 0.962328i \(-0.412351\pi\)
0.271892 + 0.962328i \(0.412351\pi\)
\(308\) 0 0
\(309\) 20.5623 1.16975
\(310\) 0 0
\(311\) 5.19098 + 15.9762i 0.294354 + 0.905927i 0.983438 + 0.181246i \(0.0580130\pi\)
−0.689084 + 0.724681i \(0.741987\pi\)
\(312\) 0 0
\(313\) 6.07295 + 4.41226i 0.343263 + 0.249395i 0.746037 0.665904i \(-0.231954\pi\)
−0.402774 + 0.915299i \(0.631954\pi\)
\(314\) 0 0
\(315\) 7.42705 22.8581i 0.418467 1.28791i
\(316\) 0 0
\(317\) 11.7812 8.55951i 0.661695 0.480750i −0.205540 0.978649i \(-0.565895\pi\)
0.867235 + 0.497899i \(0.165895\pi\)
\(318\) 0 0
\(319\) −21.9336 18.3273i −1.22805 1.02613i
\(320\) 0 0
\(321\) −24.4894 + 17.7926i −1.36686 + 0.993084i
\(322\) 0 0
\(323\) 2.83688 8.73102i 0.157848 0.485807i
\(324\) 0 0
\(325\) 4.59017 + 3.33495i 0.254617 + 0.184990i
\(326\) 0 0
\(327\) 10.0902 + 31.0543i 0.557988 + 1.71731i
\(328\) 0 0
\(329\) −5.32624 −0.293645
\(330\) 0 0
\(331\) −12.0000 −0.659580 −0.329790 0.944054i \(-0.606978\pi\)
−0.329790 + 0.944054i \(0.606978\pi\)
\(332\) 0 0
\(333\) −2.20820 6.79615i −0.121009 0.372427i
\(334\) 0 0
\(335\) 16.9443 + 12.3107i 0.925764 + 0.672607i
\(336\) 0 0
\(337\) 7.42705 22.8581i 0.404577 1.24516i −0.516670 0.856184i \(-0.672829\pi\)
0.921248 0.388976i \(-0.127171\pi\)
\(338\) 0 0
\(339\) 37.1976 27.0256i 2.02029 1.46783i
\(340\) 0 0
\(341\) 0.690983 + 2.74717i 0.0374188 + 0.148768i
\(342\) 0 0
\(343\) 2.66312 1.93487i 0.143795 0.104473i
\(344\) 0 0
\(345\) −3.23607 + 9.95959i −0.174224 + 0.536206i
\(346\) 0 0
\(347\) 14.3992 + 10.4616i 0.772989 + 0.561609i 0.902867 0.429921i \(-0.141458\pi\)
−0.129878 + 0.991530i \(0.541458\pi\)
\(348\) 0 0
\(349\) −5.04508 15.5272i −0.270057 0.831151i −0.990485 0.137621i \(-0.956055\pi\)
0.720428 0.693530i \(-0.243945\pi\)
\(350\) 0 0
\(351\) −5.32624 −0.284294
\(352\) 0 0
\(353\) −14.9443 −0.795403 −0.397702 0.917515i \(-0.630192\pi\)
−0.397702 + 0.917515i \(0.630192\pi\)
\(354\) 0 0
\(355\) 3.19098 + 9.82084i 0.169360 + 0.521236i
\(356\) 0 0
\(357\) −19.4443 14.1271i −1.02910 0.747685i
\(358\) 0 0
\(359\) 3.57295 10.9964i 0.188573 0.580368i −0.811419 0.584465i \(-0.801304\pi\)
0.999992 + 0.00409736i \(0.00130423\pi\)
\(360\) 0 0
\(361\) 3.35410 2.43690i 0.176532 0.128258i
\(362\) 0 0
\(363\) −12.5172 + 25.9358i −0.656984 + 1.36128i
\(364\) 0 0
\(365\) −1.19098 + 0.865300i −0.0623389 + 0.0452919i
\(366\) 0 0
\(367\) 6.22542 19.1599i 0.324965 1.00014i −0.646492 0.762921i \(-0.723765\pi\)
0.971457 0.237217i \(-0.0762353\pi\)
\(368\) 0 0
\(369\) −26.8713 19.5232i −1.39887 1.01634i
\(370\) 0 0
\(371\) 4.87132 + 14.9924i 0.252906 + 0.778366i
\(372\) 0 0
\(373\) −6.58359 −0.340885 −0.170443 0.985368i \(-0.554520\pi\)
−0.170443 + 0.985368i \(0.554520\pi\)
\(374\) 0 0
\(375\) −31.2705 −1.61480
\(376\) 0 0
\(377\) 6.34346 + 19.5232i 0.326705 + 1.00549i
\(378\) 0 0
\(379\) −2.54508 1.84911i −0.130732 0.0949825i 0.520497 0.853863i \(-0.325747\pi\)
−0.651230 + 0.758881i \(0.725747\pi\)
\(380\) 0 0
\(381\) 1.92705 5.93085i 0.0987258 0.303847i
\(382\) 0 0
\(383\) −16.1074 + 11.7027i −0.823049 + 0.597980i −0.917584 0.397541i \(-0.869864\pi\)
0.0945351 + 0.995522i \(0.469864\pi\)
\(384\) 0 0
\(385\) 5.04508 + 20.0579i 0.257121 + 1.02225i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −8.28115 + 25.4868i −0.419871 + 1.29223i 0.487950 + 0.872872i \(0.337745\pi\)
−0.907821 + 0.419359i \(0.862255\pi\)
\(390\) 0 0
\(391\) 4.76393 + 3.46120i 0.240922 + 0.175040i
\(392\) 0 0
\(393\) −7.70820 23.7234i −0.388827 1.19669i
\(394\) 0 0
\(395\) 11.5623 0.581763
\(396\) 0 0
\(397\) 32.8328 1.64783 0.823916 0.566712i \(-0.191785\pi\)
0.823916 + 0.566712i \(0.191785\pi\)
\(398\) 0 0
\(399\) 12.0172 + 36.9852i 0.601614 + 1.85158i
\(400\) 0 0
\(401\) −5.45492 3.96323i −0.272405 0.197914i 0.443193 0.896426i \(-0.353846\pi\)
−0.715598 + 0.698512i \(0.753846\pi\)
\(402\) 0 0
\(403\) 0.628677 1.93487i 0.0313166 0.0963827i
\(404\) 0 0
\(405\) −7.47214 + 5.42882i −0.371293 + 0.269760i
\(406\) 0 0
\(407\) 4.71885 + 3.94298i 0.233905 + 0.195446i
\(408\) 0 0
\(409\) 5.78115 4.20025i 0.285860 0.207689i −0.435610 0.900136i \(-0.643467\pi\)
0.721469 + 0.692447i \(0.243467\pi\)
\(410\) 0 0
\(411\) −11.1631 + 34.3565i −0.550636 + 1.69468i
\(412\) 0 0
\(413\) 3.39919 + 2.46965i 0.167263 + 0.121524i
\(414\) 0 0
\(415\) −6.51722 20.0579i −0.319918 0.984606i
\(416\) 0 0
\(417\) −30.2705 −1.48235
\(418\) 0 0
\(419\) −4.58359 −0.223923 −0.111962 0.993713i \(-0.535713\pi\)
−0.111962 + 0.993713i \(0.535713\pi\)
\(420\) 0 0
\(421\) −2.86475 8.81678i −0.139619 0.429704i 0.856661 0.515880i \(-0.172535\pi\)
−0.996280 + 0.0861767i \(0.972535\pi\)
\(422\) 0 0
\(423\) −4.30902 3.13068i −0.209512 0.152219i
\(424\) 0 0
\(425\) −1.75329 + 5.39607i −0.0850470 + 0.261748i
\(426\) 0 0
\(427\) 7.42705 5.39607i 0.359420 0.261134i
\(428\) 0 0
\(429\) 17.5172 10.9964i 0.845739 0.530912i
\(430\) 0 0
\(431\) 13.4894 9.80059i 0.649759 0.472078i −0.213430 0.976958i \(-0.568463\pi\)
0.863189 + 0.504881i \(0.168463\pi\)
\(432\) 0 0
\(433\) 6.01064 18.4989i 0.288853 0.888998i −0.696364 0.717689i \(-0.745200\pi\)
0.985217 0.171310i \(-0.0547999\pi\)
\(434\) 0 0
\(435\) −29.5344 21.4580i −1.41607 1.02883i
\(436\) 0 0
\(437\) −2.94427 9.06154i −0.140844 0.433472i
\(438\) 0 0
\(439\) −15.4164 −0.735785 −0.367893 0.929868i \(-0.619921\pi\)
−0.367893 + 0.929868i \(0.619921\pi\)
\(440\) 0 0
\(441\) 30.2705 1.44145
\(442\) 0 0
\(443\) 1.01064 + 3.11044i 0.0480171 + 0.147781i 0.972190 0.234192i \(-0.0752445\pi\)
−0.924173 + 0.381974i \(0.875245\pi\)
\(444\) 0 0
\(445\) 0.618034 + 0.449028i 0.0292976 + 0.0212860i
\(446\) 0 0
\(447\) −1.92705 + 5.93085i −0.0911464 + 0.280520i
\(448\) 0 0
\(449\) 11.7812 8.55951i 0.555987 0.403948i −0.274001 0.961729i \(-0.588347\pi\)
0.829988 + 0.557781i \(0.188347\pi\)
\(450\) 0 0
\(451\) 28.5172 + 1.93487i 1.34282 + 0.0911094i
\(452\) 0 0
\(453\) 40.8156 29.6543i 1.91768 1.39328i
\(454\) 0 0
\(455\) 4.59017 14.1271i 0.215190 0.662288i
\(456\) 0 0
\(457\) 5.78115 + 4.20025i 0.270431 + 0.196480i 0.714733 0.699398i \(-0.246548\pi\)
−0.444302 + 0.895877i \(0.646548\pi\)
\(458\) 0 0
\(459\) −1.64590 5.06555i −0.0768239 0.236440i
\(460\) 0 0
\(461\) −33.7771 −1.57316 −0.786578 0.617491i \(-0.788149\pi\)
−0.786578 + 0.617491i \(0.788149\pi\)
\(462\) 0 0
\(463\) −12.0000 −0.557687 −0.278844 0.960337i \(-0.589951\pi\)
−0.278844 + 0.960337i \(0.589951\pi\)
\(464\) 0 0
\(465\) 1.11803 + 3.44095i 0.0518476 + 0.159570i
\(466\) 0 0
\(467\) −10.2533 7.44945i −0.474466 0.344719i 0.324713 0.945812i \(-0.394732\pi\)
−0.799179 + 0.601093i \(0.794732\pi\)
\(468\) 0 0
\(469\) −15.4164 + 47.4468i −0.711864 + 2.19089i
\(470\) 0 0
\(471\) 37.1976 27.0256i 1.71397 1.24527i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 7.42705 5.39607i 0.340776 0.247589i
\(476\) 0 0
\(477\) −4.87132 + 14.9924i −0.223043 + 0.686454i
\(478\) 0 0
\(479\) 22.1074 + 16.0620i 1.01011 + 0.733890i 0.964233 0.265057i \(-0.0853909\pi\)
0.0458798 + 0.998947i \(0.485391\pi\)
\(480\) 0 0
\(481\) −1.36475 4.20025i −0.0622270 0.191515i
\(482\) 0 0
\(483\) −24.9443 −1.13500
\(484\) 0 0
\(485\) 23.5623 1.06991
\(486\) 0 0
\(487\) −5.57295 17.1518i −0.252534 0.777221i −0.994305 0.106568i \(-0.966014\pi\)
0.741771 0.670653i \(-0.233986\pi\)
\(488\) 0 0
\(489\) 23.9894 + 17.4293i 1.08484 + 0.788180i
\(490\) 0 0
\(491\) 3.57295 10.9964i 0.161245 0.496261i −0.837495 0.546445i \(-0.815981\pi\)
0.998740 + 0.0501840i \(0.0159808\pi\)
\(492\) 0 0
\(493\) −16.6074 + 12.0660i −0.747959 + 0.543424i
\(494\) 0 0
\(495\) −7.70820 + 19.1926i −0.346458 + 0.862645i
\(496\) 0 0
\(497\) −19.8992 + 14.4576i −0.892601 + 0.648512i
\(498\) 0 0
\(499\) −7.19098 + 22.1316i −0.321913 + 0.990745i 0.650902 + 0.759161i \(0.274391\pi\)
−0.972815 + 0.231584i \(0.925609\pi\)
\(500\) 0 0
\(501\) 37.6976 + 27.3889i 1.68420 + 1.22364i
\(502\) 0 0
\(503\) −11.2812 34.7198i −0.503002 1.54808i −0.804104 0.594488i \(-0.797355\pi\)
0.301102 0.953592i \(-0.402645\pi\)
\(504\) 0 0
\(505\) −28.7984 −1.28151
\(506\) 0 0
\(507\) 19.1803 0.851829
\(508\) 0 0
\(509\) −8.86475 27.2829i −0.392923 1.20929i −0.930567 0.366121i \(-0.880686\pi\)
0.537644 0.843172i \(-0.319314\pi\)
\(510\) 0 0
\(511\) −2.83688 2.06111i −0.125496 0.0911783i
\(512\) 0 0
\(513\) −2.66312 + 8.19624i −0.117580 + 0.361873i
\(514\) 0 0
\(515\) −10.2812 + 7.46969i −0.453042 + 0.329154i
\(516\) 0 0
\(517\) 4.57295 + 0.310271i 0.201118 + 0.0136457i
\(518\) 0 0
\(519\) −14.3992 + 10.4616i −0.632054 + 0.459214i
\(520\) 0 0
\(521\) 2.37132 7.29818i 0.103890 0.319739i −0.885579 0.464489i \(-0.846238\pi\)
0.989468 + 0.144750i \(0.0462379\pi\)
\(522\) 0 0
\(523\) −23.0172 16.7230i −1.00647 0.731245i −0.0430065 0.999075i \(-0.513694\pi\)
−0.963466 + 0.267830i \(0.913694\pi\)
\(524\) 0 0
\(525\) −7.42705 22.8581i −0.324143 0.997610i
\(526\) 0 0
\(527\) 2.03444 0.0886217
\(528\) 0 0
\(529\) −16.8885 −0.734285
\(530\) 0 0
\(531\) 1.29837 + 3.99598i 0.0563446 + 0.173411i
\(532\) 0 0
\(533\) −16.6074 12.0660i −0.719346 0.522635i
\(534\) 0 0
\(535\) 5.78115 17.7926i 0.249941 0.769239i
\(536\) 0 0
\(537\) −5.54508 + 4.02874i −0.239288 + 0.173853i
\(538\) 0 0
\(539\) −22.0623 + 13.8496i −0.950291 + 0.596543i
\(540\) 0 0
\(541\) −6.69098 + 4.86128i −0.287668 + 0.209003i −0.722255 0.691627i \(-0.756894\pi\)
0.434587 + 0.900630i \(0.356894\pi\)
\(542\) 0 0
\(543\) 1.30902 4.02874i 0.0561753 0.172890i
\(544\) 0 0
\(545\) −16.3262 11.8617i −0.699339 0.508100i
\(546\) 0 0
\(547\) 11.8435 + 36.4504i 0.506390 + 1.55851i 0.798422 + 0.602099i \(0.205669\pi\)
−0.292032 + 0.956409i \(0.594331\pi\)
\(548\) 0 0
\(549\) 9.18034 0.391807
\(550\) 0 0
\(551\) 33.2148 1.41500
\(552\) 0 0
\(553\) 8.51064 + 26.1931i 0.361909 + 1.11384i
\(554\) 0 0
\(555\) 6.35410 + 4.61653i 0.269717 + 0.195961i
\(556\) 0 0
\(557\) −9.80902 + 30.1891i −0.415621 + 1.27915i 0.496073 + 0.868281i \(0.334775\pi\)
−0.911694 + 0.410870i \(0.865225\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 15.8713 + 13.2618i 0.670088 + 0.559913i
\(562\) 0 0
\(563\) 10.5451 7.66145i 0.444422 0.322892i −0.342967 0.939347i \(-0.611432\pi\)
0.787390 + 0.616456i \(0.211432\pi\)
\(564\) 0 0
\(565\) −8.78115 + 27.0256i −0.369426 + 1.13698i
\(566\) 0 0
\(567\) −17.7984 12.9313i −0.747461 0.543063i
\(568\) 0 0
\(569\) 9.24671 + 28.4585i 0.387642 + 1.19304i 0.934545 + 0.355844i \(0.115807\pi\)
−0.546903 + 0.837196i \(0.684193\pi\)
\(570\) 0 0
\(571\) 9.52786 0.398729 0.199364 0.979925i \(-0.436112\pi\)
0.199364 + 0.979925i \(0.436112\pi\)
\(572\) 0 0
\(573\) −68.1591 −2.84739
\(574\) 0 0
\(575\) 1.81966 + 5.60034i 0.0758851 + 0.233550i
\(576\) 0 0
\(577\) 29.1976 + 21.2133i 1.21551 + 0.883120i 0.995719 0.0924270i \(-0.0294625\pi\)
0.219791 + 0.975547i \(0.429462\pi\)
\(578\) 0 0
\(579\) 18.2533 56.1778i 0.758581 2.33467i
\(580\) 0 0
\(581\) 40.6418 29.5280i 1.68611 1.22503i
\(582\) 0 0
\(583\) −3.30902 13.1558i −0.137045 0.544857i
\(584\) 0 0
\(585\) 12.0172 8.73102i 0.496851 0.360983i
\(586\) 0 0
\(587\) −2.42705 + 7.46969i −0.100175 + 0.308307i −0.988568 0.150777i \(-0.951822\pi\)
0.888393 + 0.459084i \(0.151822\pi\)
\(588\) 0 0
\(589\) −2.66312 1.93487i −0.109732 0.0797249i
\(590\) 0 0
\(591\) 2.38197 + 7.33094i 0.0979810 + 0.301554i
\(592\) 0 0
\(593\) 37.4164 1.53651 0.768254 0.640145i \(-0.221126\pi\)
0.768254 + 0.640145i \(0.221126\pi\)
\(594\) 0 0
\(595\) 14.8541 0.608959
\(596\) 0 0
\(597\) 0.763932 + 2.35114i 0.0312657 + 0.0962258i
\(598\) 0 0
\(599\) −37.1976 27.0256i −1.51985 1.10424i −0.961561 0.274591i \(-0.911458\pi\)
−0.558290 0.829646i \(-0.688542\pi\)
\(600\) 0 0
\(601\) 10.3713 31.9196i 0.423055 1.30203i −0.481789 0.876287i \(-0.660013\pi\)
0.904844 0.425743i \(-0.139987\pi\)
\(602\) 0 0
\(603\) −40.3607 + 29.3238i −1.64361 + 1.19416i
\(604\) 0 0
\(605\) −3.16312 17.5150i −0.128599 0.712088i
\(606\) 0 0
\(607\) −17.3435 + 12.6008i −0.703949 + 0.511449i −0.881216 0.472714i \(-0.843274\pi\)
0.177267 + 0.984163i \(0.443274\pi\)
\(608\) 0 0
\(609\) 26.8713 82.7014i 1.08888 3.35123i
\(610\) 0 0
\(611\) −2.66312 1.93487i −0.107738 0.0782764i
\(612\) 0 0
\(613\) −3.22542 9.92684i −0.130274 0.400941i 0.864551 0.502545i \(-0.167603\pi\)
−0.994825 + 0.101603i \(0.967603\pi\)
\(614\) 0 0
\(615\) 36.5066 1.47209
\(616\) 0 0
\(617\) −7.52786 −0.303060 −0.151530 0.988453i \(-0.548420\pi\)
−0.151530 + 0.988453i \(0.548420\pi\)
\(618\) 0 0
\(619\) 6.89919 + 21.2335i 0.277302 + 0.853447i 0.988601 + 0.150558i \(0.0481070\pi\)
−0.711299 + 0.702889i \(0.751893\pi\)
\(620\) 0 0
\(621\) −4.47214 3.24920i −0.179461 0.130386i
\(622\) 0 0
\(623\) −0.562306 + 1.73060i −0.0225283 + 0.0693350i
\(624\) 0 0
\(625\) 6.00000 4.35926i 0.240000 0.174370i
\(626\) 0 0
\(627\) −8.16312 32.4544i −0.326004 1.29611i
\(628\) 0 0
\(629\) 3.57295 2.59590i 0.142463 0.103505i
\(630\) 0 0
\(631\) −7.37132 + 22.6866i −0.293448 + 0.903139i 0.690291 + 0.723532i \(0.257483\pi\)
−0.983738 + 0.179607i \(0.942517\pi\)
\(632\) 0 0
\(633\) 25.2254 + 18.3273i 1.00262 + 0.728447i
\(634\) 0 0
\(635\) 1.19098 + 3.66547i 0.0472627 + 0.145460i
\(636\) 0 0
\(637\) 18.7082 0.741246
\(638\) 0 0
\(639\) −24.5967 −0.973032
\(640\) 0 0
\(641\) 8.37132 + 25.7643i 0.330647 + 1.01763i 0.968827 + 0.247740i \(0.0796879\pi\)
−0.638179 + 0.769888i \(0.720312\pi\)
\(642\) 0 0
\(643\) 9.92705 + 7.21242i 0.391485 + 0.284430i 0.766064 0.642765i \(-0.222213\pi\)
−0.374579 + 0.927195i \(0.622213\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −5.45492 + 3.96323i −0.214455 + 0.155811i −0.689827 0.723974i \(-0.742313\pi\)
0.475372 + 0.879785i \(0.342313\pi\)
\(648\) 0 0
\(649\) −2.77458 2.31838i −0.108912 0.0910046i
\(650\) 0 0
\(651\) −6.97214 + 5.06555i −0.273260 + 0.198535i
\(652\) 0 0
\(653\) 2.37132 7.29818i 0.0927970 0.285600i −0.893876 0.448314i \(-0.852025\pi\)
0.986673 + 0.162714i \(0.0520247\pi\)
\(654\) 0 0
\(655\) 12.4721 + 9.06154i 0.487327 + 0.354064i
\(656\) 0 0
\(657\) −1.08359 3.33495i −0.0422750 0.130109i
\(658\) 0 0
\(659\) 40.3607 1.57223 0.786114 0.618081i \(-0.212090\pi\)
0.786114 + 0.618081i \(0.212090\pi\)
\(660\) 0 0
\(661\) −30.3607 −1.18089 −0.590447 0.807077i \(-0.701048\pi\)
−0.590447 + 0.807077i \(0.701048\pi\)
\(662\) 0 0
\(663\) −4.59017 14.1271i −0.178267 0.548651i
\(664\) 0 0
\(665\) −19.4443 14.1271i −0.754017 0.547825i
\(666\) 0 0
\(667\) −6.58359 + 20.2622i −0.254918 + 0.784556i
\(668\) 0 0
\(669\) −25.7254 + 18.6906i −0.994602 + 0.722621i
\(670\) 0 0
\(671\) −6.69098 + 4.20025i −0.258303 + 0.162149i
\(672\) 0 0
\(673\) −29.8156 + 21.6623i −1.14931 + 0.835020i −0.988389 0.151948i \(-0.951446\pi\)
−0.160918 + 0.986968i \(0.551446\pi\)
\(674\) 0 0
\(675\) 1.64590 5.06555i 0.0633506 0.194973i
\(676\) 0 0
\(677\) 2.83688 + 2.06111i 0.109030 + 0.0792151i 0.640964 0.767571i \(-0.278535\pi\)
−0.531934 + 0.846786i \(0.678535\pi\)
\(678\) 0 0
\(679\) 17.3435 + 53.3777i 0.665581 + 2.04845i
\(680\) 0 0
\(681\) −14.8541 −0.569210
\(682\) 0 0
\(683\) −0.944272 −0.0361316 −0.0180658 0.999837i \(-0.505751\pi\)
−0.0180658 + 0.999837i \(0.505751\pi\)
\(684\) 0 0
\(685\) −6.89919 21.2335i −0.263604 0.811291i
\(686\) 0 0
\(687\) 34.4615 + 25.0377i 1.31479 + 0.955249i
\(688\) 0 0
\(689\) −3.01064 + 9.26581i −0.114696 + 0.352999i
\(690\) 0 0
\(691\) 19.4894 14.1598i 0.741410 0.538666i −0.151742 0.988420i \(-0.548488\pi\)
0.893152 + 0.449754i \(0.148488\pi\)
\(692\) 0 0
\(693\) −49.1525 3.33495i −1.86715 0.126684i
\(694\) 0 0
\(695\) 15.1353 10.9964i 0.574113 0.417117i
\(696\) 0 0
\(697\) 6.34346 19.5232i 0.240276 0.739492i
\(698\) 0 0
\(699\) 5.04508 + 3.66547i 0.190823 + 0.138641i
\(700\) 0 0
\(701\) 15.1353 + 46.5815i 0.571651 + 1.75936i 0.647311 + 0.762226i \(0.275894\pi\)
−0.0756600 + 0.997134i \(0.524106\pi\)
\(702\) 0 0
\(703\) −7.14590 −0.269513
\(704\) 0 0
\(705\) 5.85410 0.220478
\(706\) 0 0
\(707\) −21.1976 65.2394i −0.797216 2.45358i
\(708\) 0 0
\(709\) −18.8713 13.7108i −0.708727 0.514921i 0.174035 0.984739i \(-0.444319\pi\)
−0.882763 + 0.469819i \(0.844319\pi\)
\(710\) 0 0
\(711\) −8.51064 + 26.1931i −0.319174 + 0.982317i
\(712\) 0 0
\(713\) 1.70820 1.24108i 0.0639727 0.0464789i
\(714\) 0 0
\(715\) −4.76393 + 11.8617i −0.178161 + 0.443603i
\(716\) 0 0
\(717\) −24.4894 + 17.7926i −0.914572 + 0.664475i
\(718\) 0 0
\(719\) −12.1353 + 37.3485i −0.452569 + 1.39286i 0.421397 + 0.906876i \(0.361540\pi\)
−0.873966 + 0.485987i \(0.838460\pi\)
\(720\) 0 0
\(721\) −24.4894 17.7926i −0.912031 0.662630i
\(722\) 0 0
\(723\) −10.0902 31.0543i −0.375257 1.15492i
\(724\) 0 0
\(725\) −20.5279 −0.762386
\(726\) 0 0
\(727\) 32.0000 1.18681 0.593407 0.804902i \(-0.297782\pi\)
0.593407 + 0.804902i \(0.297782\pi\)
\(728\) 0 0
\(729\) −12.2254 37.6260i −0.452794 1.39356i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 10.3713 31.9196i 0.383074 1.17898i −0.554795 0.831987i \(-0.687203\pi\)
0.937868 0.346992i \(-0.112797\pi\)
\(734\) 0 0
\(735\) −26.9164 + 19.5559i −0.992827 + 0.721331i
\(736\) 0 0
\(737\) 16.0000 39.8384i 0.589368 1.46747i
\(738\) 0 0
\(739\) −19.1631 + 13.9228i −0.704927 + 0.512159i −0.881533 0.472122i \(-0.843488\pi\)
0.176606 + 0.984282i \(0.443488\pi\)
\(740\) 0 0
\(741\) −7.42705 + 22.8581i −0.272840 + 0.839714i
\(742\) 0 0
\(743\) −2.83688 2.06111i −0.104075 0.0756150i 0.534531 0.845149i \(-0.320488\pi\)
−0.638606 + 0.769534i \(0.720488\pi\)
\(744\) 0 0
\(745\) −1.19098 3.66547i −0.0436342 0.134292i
\(746\) 0 0
\(747\) 50.2361 1.83804
\(748\) 0 0
\(749\) 44.5623 1.62827
\(750\) 0 0
\(751\) 2.13525 + 6.57164i 0.0779166 + 0.239803i 0.982426 0.186650i \(-0.0597631\pi\)
−0.904510 + 0.426453i \(0.859763\pi\)
\(752\) 0 0
\(753\) 54.6418 + 39.6996i 1.99126 + 1.44673i
\(754\) 0 0
\(755\) −9.63525 + 29.6543i −0.350663 + 1.07923i
\(756\) 0 0
\(757\) −21.6353 + 15.7189i −0.786347 + 0.571314i −0.906877 0.421395i \(-0.861540\pi\)
0.120530 + 0.992710i \(0.461540\pi\)
\(758\) 0 0
\(759\) 21.4164 + 1.45309i 0.777366 + 0.0527436i
\(760\) 0 0
\(761\) 15.3090 11.1227i 0.554951 0.403196i −0.274656 0.961542i \(-0.588564\pi\)
0.829608 + 0.558347i \(0.188564\pi\)
\(762\) 0 0
\(763\) 14.8541 45.7162i 0.537755 1.65504i
\(764\) 0 0
\(765\) 12.0172 + 8.73102i 0.434484 + 0.315671i
\(766\) 0 0
\(767\) 0.802439 + 2.46965i 0.0289744 + 0.0891740i
\(768\) 0 0
\(769\) 37.4164 1.34927 0.674635 0.738151i \(-0.264301\pi\)
0.674635 + 0.738151i \(0.264301\pi\)
\(770\) 0 0
\(771\) 12.8541 0.462929
\(772\) 0 0
\(773\) −8.75329 26.9399i −0.314834 0.968959i −0.975823 0.218563i \(-0.929863\pi\)
0.660989 0.750396i \(-0.270137\pi\)
\(774\) 0 0
\(775\) 1.64590 + 1.19581i 0.0591224 + 0.0429549i
\(776\) 0 0
\(777\) −5.78115 + 17.7926i −0.207398 + 0.638305i
\(778\) 0 0
\(779\) −26.8713 + 19.5232i −0.962765 + 0.699490i
\(780\) 0 0
\(781\) 17.9271 11.2537i 0.641480 0.402688i
\(782\) 0 0
\(783\) 15.5902 11.3269i 0.557147 0.404791i
\(784\) 0 0
\(785\) −8.78115 + 27.0256i −0.313413 + 0.964585i
\(786\) 0 0
\(787\) −13.4894 9.80059i −0.480844 0.349353i 0.320809 0.947144i \(-0.396045\pi\)
−0.801652 + 0.597791i \(0.796045\pi\)
\(788\) 0 0
\(789\) −4.76393 14.6619i −0.169600 0.521977i
\(790\) 0 0
\(791\) −67.6869 −2.40667
\(792\) 0 0
\(793\) 5.67376 0.201481
\(794\) 0 0
\(795\) −5.35410 16.4782i −0.189890 0.584423i
\(796\) 0 0
\(797\) −11.1631 8.11048i −0.395418 0.287288i 0.372254 0.928131i \(-0.378585\pi\)
−0.767672 + 0.640843i \(0.778585\pi\)
\(798\) 0 0
\(799\) 1.01722 3.13068i 0.0359867 0.110756i
\(800\) 0 0
\(801\) −1.47214 + 1.06957i −0.0520154 + 0.0377914i
\(802\) 0 0
\(803\) 2.31559 + 1.93487i 0.0817156 + 0.0682801i
\(804\) 0 0
\(805\) 12.4721 9.06154i 0.439585 0.319377i
\(806\) 0 0
\(807\) 19.4894 59.9821i 0.686058 2.11147i
\(808\) 0 0
\(809\) 15.3090 + 11.1227i 0.538236 + 0.391052i 0.823430 0.567418i \(-0.192058\pi\)
−0.285193 + 0.958470i \(0.592058\pi\)
\(810\) 0 0
\(811\) −9.46149 29.1195i −0.332238 1.02252i −0.968067 0.250693i \(-0.919342\pi\)
0.635829 0.771830i \(-0.280658\pi\)
\(812\) 0 0
\(813\) 50.4508 1.76939
\(814\) 0 0
\(815\) −18.3262 −0.641940
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 28.6246 + 20.7970i 1.00022 + 0.726706i
\(820\) 0 0
\(821\) −7.98936 + 24.5887i −0.278830 + 0.858152i 0.709350 + 0.704857i \(0.248989\pi\)
−0.988180 + 0.153295i \(0.951011\pi\)
\(822\) 0 0
\(823\) 31.9615 23.2214i 1.11411 0.809447i 0.130802 0.991409i \(-0.458245\pi\)
0.983306 + 0.181962i \(0.0582448\pi\)
\(824\) 0 0
\(825\) 5.04508 + 20.0579i 0.175647 + 0.698328i
\(826\) 0 0
\(827\) 10.5451 7.66145i 0.366689 0.266415i −0.389148 0.921175i \(-0.627231\pi\)
0.755836 + 0.654760i \(0.227231\pi\)
\(828\) 0 0
\(829\) 10.7746 33.1607i 0.374216 1.15172i −0.569789 0.821791i \(-0.692975\pi\)
0.944006 0.329929i \(-0.107025\pi\)
\(830\) 0 0
\(831\) −47.7877 34.7198i −1.65774 1.20442i
\(832\) 0 0
\(833\) 5.78115 + 17.7926i 0.200305 + 0.616476i
\(834\) 0 0
\(835\) −28.7984 −0.996609
\(836\) 0 0
\(837\) −1.90983 −0.0660134
\(838\) 0 0
\(839\) −0.809017 2.48990i −0.0279304 0.0859608i 0.936120 0.351682i \(-0.114390\pi\)
−0.964050 + 0.265721i \(0.914390\pi\)
\(840\) 0 0
\(841\) −36.6246 26.6093i −1.26292 0.917563i
\(842\) 0 0
\(843\) −22.1074 + 68.0396i −0.761419 + 2.34341i
\(844\) 0 0
\(845\) −9.59017 + 6.96767i −0.329912 + 0.239695i
\(846\) 0 0
\(847\) 37.3500 20.0579i 1.28336 0.689199i
\(848\) 0 0
\(849\) −24.4894 + 17.7926i −0.840473 + 0.610639i
\(850\) 0 0
\(851\) 1.41641 4.35926i 0.0485538 0.149433i
\(852\) 0 0
\(853\) −14.3992 10.4616i −0.493019 0.358199i 0.313325 0.949646i \(-0.398557\pi\)
−0.806344 + 0.591447i \(0.798557\pi\)
\(854\) 0 0
\(855\) −7.42705 22.8581i −0.254000 0.781731i
\(856\) 0 0
\(857\) 2.94427 0.100574 0.0502872 0.998735i \(-0.483986\pi\)
0.0502872 + 0.998735i \(0.483986\pi\)
\(858\) 0 0
\(859\) −31.0557 −1.05961 −0.529804 0.848120i \(-0.677734\pi\)
−0.529804 + 0.848120i \(0.677734\pi\)
\(860\) 0 0
\(861\) 26.8713 + 82.7014i 0.915772 + 2.81846i
\(862\) 0 0
\(863\) 20.3992 + 14.8209i 0.694396 + 0.504509i 0.878102 0.478473i \(-0.158809\pi\)
−0.183706 + 0.982981i \(0.558809\pi\)
\(864\) 0 0
\(865\) 3.39919 10.4616i 0.115576 0.355706i
\(866\) 0 0
\(867\) −23.9894 + 17.4293i −0.814721 + 0.591930i
\(868\) 0 0
\(869\) −5.78115 22.9844i −0.196112 0.779691i
\(870\) 0 0
\(871\) −24.9443 + 18.1231i −0.845204 + 0.614077i
\(872\) 0 0
\(873\) −17.3435 + 53.3777i −0.586987 + 1.80656i
\(874\) 0 0
\(875\) 37.2426 + 27.0584i 1.25903 + 0.914740i
\(876\) 0 0
\(877\) 8.55166 + 26.3193i 0.288769 + 0.888740i 0.985244 + 0.171158i \(0.0547510\pi\)
−0.696474 + 0.717582i \(0.745249\pi\)
\(878\) 0 0
\(879\) −22.5623 −0.761008
\(880\) 0 0
\(881\) 15.8885 0.535299 0.267649 0.963516i \(-0.413753\pi\)
0.267649 + 0.963516i \(0.413753\pi\)
\(882\) 0 0
\(883\) 1.55166 + 4.77553i 0.0522176 + 0.160709i 0.973765 0.227557i \(-0.0730739\pi\)
−0.921547 + 0.388267i \(0.873074\pi\)
\(884\) 0 0
\(885\) −3.73607 2.71441i −0.125587 0.0912440i
\(886\) 0 0
\(887\) 0.628677 1.93487i 0.0211089 0.0649665i −0.939947 0.341320i \(-0.889126\pi\)
0.961056 + 0.276353i \(0.0891260\pi\)
\(888\) 0 0
\(889\) −7.42705 + 5.39607i −0.249095 + 0.180978i
\(890\) 0 0
\(891\) 14.5279 + 12.1392i 0.486702 + 0.406679i
\(892\) 0 0
\(893\) −4.30902 + 3.13068i −0.144196 + 0.104764i
\(894\) 0 0
\(895\) 1.30902 4.02874i 0.0437556 0.134666i
\(896\) 0 0
\(897\) −12.4721 9.06154i −0.416432 0.302556i
\(898\) 0 0
\(899\) 2.27458 + 7.00042i 0.0758613 + 0.233477i
\(900\) 0 0
\(901\) −9.74265 −0.324575
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0.809017 + 2.48990i 0.0268926 + 0.0827670i
\(906\) 0 0
\(907\) −1.60081 1.16306i −0.0531541 0.0386187i 0.560891 0.827890i \(-0.310459\pi\)
−0.614045 + 0.789271i \(0.710459\pi\)
\(908\) 0 0
\(909\) 21.1976 65.2394i 0.703079 2.16385i
\(910\) 0 0
\(911\) 15.7812 11.4657i 0.522853 0.379875i −0.294825 0.955551i \(-0.595261\pi\)
0.817678 + 0.575676i \(0.195261\pi\)
\(912\) 0 0
\(913\) −36.6140 + 22.9844i −1.21175 + 0.760671i
\(914\) 0 0
\(915\) −8.16312 + 5.93085i −0.269864 + 0.196068i
\(916\) 0 0
\(917\) −11.3475 + 34.9241i −0.374728 + 1.15330i
\(918\) 0 0
\(919\) 17.3435 + 12.6008i 0.572108 + 0.415661i 0.835870 0.548927i \(-0.184963\pi\)
−0.263762 + 0.964588i \(0.584963\pi\)
\(920\) 0 0
\(921\) −7.70820 23.7234i −0.253994 0.781713i
\(922\) 0 0
\(923\) −15.2016 −0.500368
\(924\) 0 0
\(925\) 4.41641 0.145211
\(926\) 0 0
\(927\) −9.35410 28.7890i −0.307229 0.945554i
\(928\) 0 0
\(929\) −16.1074 11.7027i −0.528466 0.383953i 0.291317 0.956626i \(-0.405906\pi\)
−0.819784 + 0.572673i \(0.805906\pi\)
\(930\) 0 0
\(931\) 9.35410 28.7890i 0.306568 0.943520i
\(932\) 0 0
\(933\) 35.5795 25.8500i 1.16482 0.846292i
\(934\) 0 0
\(935\) −12.7533 0.865300i −0.417077 0.0282983i
\(936\) 0 0
\(937\) 5.78115 4.20025i 0.188862 0.137216i −0.489336 0.872095i \(-0.662761\pi\)
0.678198 + 0.734879i \(0.262761\pi\)
\(938\) 0 0
\(939\) 6.07295 18.6906i 0.198183 0.609945i
\(940\) 0 0
\(941\) −9.63525 7.00042i −0.314100 0.228207i 0.419554 0.907731i \(-0.362187\pi\)
−0.733654 + 0.679523i \(0.762187\pi\)
\(942\) 0 0
\(943\) −6.58359 20.2622i −0.214391 0.659828i
\(944\) 0 0
\(945\) −13.9443 −0.453607
\(946\) 0 0
\(947\) −23.7771 −0.772652 −0.386326 0.922362i \(-0.626256\pi\)
−0.386326 + 0.922362i \(0.626256\pi\)
\(948\) 0 0
\(949\) −0.669697 2.06111i −0.0217393 0.0669066i
\(950\) 0 0
\(951\) −30.8435 22.4091i −1.00017 0.726664i
\(952\) 0 0
\(953\) 14.0106 43.1203i 0.453849 1.39680i −0.418632 0.908156i \(-0.637490\pi\)
0.872481 0.488648i \(-0.162510\pi\)
\(954\) 0 0
\(955\) 34.0795 24.7602i 1.10279 0.801222i
\(956\) 0 0
\(957\) −27.8885 + 69.4396i −0.901509 + 2.24466i
\(958\) 0 0
\(959\) 43.0238 31.2586i 1.38931 1.00939i
\(960\) 0 0
\(961\) −9.35410 + 28.7890i −0.301745 + 0.928676i
\(962\) 0 0
\(963\) 36.0517 + 26.1931i 1.16175 + 0.844060i
\(964\) 0 0
\(965\) 11.2812 + 34.7198i 0.363153 + 1.11767i
\(966\) 0 0
\(967\) 44.0000 1.41494 0.707472 0.706741i \(-0.249835\pi\)
0.707472 + 0.706741i \(0.249835\pi\)
\(968\) 0 0
\(969\) −24.0344 −0.772098
\(970\) 0 0
\(971\) 2.13525 + 6.57164i 0.0685236 + 0.210894i 0.979455 0.201665i \(-0.0646352\pi\)
−0.910931 + 0.412559i \(0.864635\pi\)
\(972\) 0 0
\(973\) 36.0517 + 26.1931i 1.15576 + 0.839711i
\(974\) 0 0
\(975\) 4.59017 14.1271i 0.147003 0.452429i
\(976\) 0 0
\(977\) 16.5451 12.0207i 0.529324 0.384577i −0.290781 0.956790i \(-0.593915\pi\)
0.820105 + 0.572213i \(0.193915\pi\)
\(978\) 0 0
\(979\) 0.583592 1.45309i 0.0186517 0.0464408i
\(980\) 0 0
\(981\) 38.8885 28.2542i 1.24162 0.902087i
\(982\) 0 0
\(983\) −12.1353 + 37.3485i −0.387055 + 1.19123i 0.547924 + 0.836528i \(0.315418\pi\)
−0.934979 + 0.354703i \(0.884582\pi\)
\(984\) 0 0
\(985\) −3.85410 2.80017i −0.122802 0.0892208i
\(986\) 0 0
\(987\) 4.30902 + 13.2618i 0.137158 + 0.422127i
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 24.0000 0.762385 0.381193 0.924496i \(-0.375513\pi\)
0.381193 + 0.924496i \(0.375513\pi\)
\(992\) 0 0
\(993\) 9.70820 + 29.8788i 0.308081 + 0.948174i
\(994\) 0 0
\(995\) −1.23607 0.898056i −0.0391860 0.0284703i
\(996\) 0 0
\(997\) 9.24671 28.4585i 0.292846 0.901288i −0.691090 0.722769i \(-0.742869\pi\)
0.983936 0.178520i \(-0.0571308\pi\)
\(998\) 0 0
\(999\) −3.35410 + 2.43690i −0.106119 + 0.0771000i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 44.2.e.a.25.1 4
3.2 odd 2 396.2.j.a.289.1 4
4.3 odd 2 176.2.m.b.113.1 4
5.2 odd 4 1100.2.cb.a.949.1 8
5.3 odd 4 1100.2.cb.a.949.2 8
5.4 even 2 1100.2.n.a.201.1 4
8.3 odd 2 704.2.m.d.641.1 4
8.5 even 2 704.2.m.e.641.1 4
11.2 odd 10 484.2.a.c.1.1 2
11.3 even 5 484.2.e.e.269.1 4
11.4 even 5 inner 44.2.e.a.37.1 yes 4
11.5 even 5 484.2.e.e.9.1 4
11.6 odd 10 484.2.e.d.9.1 4
11.7 odd 10 484.2.e.c.81.1 4
11.8 odd 10 484.2.e.d.269.1 4
11.9 even 5 484.2.a.b.1.1 2
11.10 odd 2 484.2.e.c.245.1 4
33.2 even 10 4356.2.a.u.1.2 2
33.20 odd 10 4356.2.a.t.1.2 2
33.26 odd 10 396.2.j.a.37.1 4
44.15 odd 10 176.2.m.b.81.1 4
44.31 odd 10 1936.2.a.ba.1.2 2
44.35 even 10 1936.2.a.z.1.2 2
55.4 even 10 1100.2.n.a.301.1 4
55.37 odd 20 1100.2.cb.a.1049.2 8
55.48 odd 20 1100.2.cb.a.1049.1 8
88.13 odd 10 7744.2.a.db.1.2 2
88.35 even 10 7744.2.a.bo.1.1 2
88.37 even 10 704.2.m.e.257.1 4
88.53 even 10 7744.2.a.da.1.2 2
88.59 odd 10 704.2.m.d.257.1 4
88.75 odd 10 7744.2.a.bp.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
44.2.e.a.25.1 4 1.1 even 1 trivial
44.2.e.a.37.1 yes 4 11.4 even 5 inner
176.2.m.b.81.1 4 44.15 odd 10
176.2.m.b.113.1 4 4.3 odd 2
396.2.j.a.37.1 4 33.26 odd 10
396.2.j.a.289.1 4 3.2 odd 2
484.2.a.b.1.1 2 11.9 even 5
484.2.a.c.1.1 2 11.2 odd 10
484.2.e.c.81.1 4 11.7 odd 10
484.2.e.c.245.1 4 11.10 odd 2
484.2.e.d.9.1 4 11.6 odd 10
484.2.e.d.269.1 4 11.8 odd 10
484.2.e.e.9.1 4 11.5 even 5
484.2.e.e.269.1 4 11.3 even 5
704.2.m.d.257.1 4 88.59 odd 10
704.2.m.d.641.1 4 8.3 odd 2
704.2.m.e.257.1 4 88.37 even 10
704.2.m.e.641.1 4 8.5 even 2
1100.2.n.a.201.1 4 5.4 even 2
1100.2.n.a.301.1 4 55.4 even 10
1100.2.cb.a.949.1 8 5.2 odd 4
1100.2.cb.a.949.2 8 5.3 odd 4
1100.2.cb.a.1049.1 8 55.48 odd 20
1100.2.cb.a.1049.2 8 55.37 odd 20
1936.2.a.z.1.2 2 44.35 even 10
1936.2.a.ba.1.2 2 44.31 odd 10
4356.2.a.t.1.2 2 33.20 odd 10
4356.2.a.u.1.2 2 33.2 even 10
7744.2.a.bo.1.1 2 88.35 even 10
7744.2.a.bp.1.1 2 88.75 odd 10
7744.2.a.da.1.2 2 88.53 even 10
7744.2.a.db.1.2 2 88.13 odd 10