| L(s) = 1 | + (2 + 3.46i)5-s + (1 − 1.73i)7-s + (2 − 3.46i)11-s + (−0.5 − 0.866i)13-s + 2·17-s − 2·19-s + (−5.49 + 9.52i)25-s + (3 − 5.19i)29-s + (5 + 8.66i)31-s + 7.99·35-s + 10·37-s + (−4 − 6.92i)41-s + (−2 + 3.46i)43-s + (2 − 3.46i)47-s + (1.50 + 2.59i)49-s + ⋯ |
| L(s) = 1 | + (0.894 + 1.54i)5-s + (0.377 − 0.654i)7-s + (0.603 − 1.04i)11-s + (−0.138 − 0.240i)13-s + 0.485·17-s − 0.458·19-s + (−1.09 + 1.90i)25-s + (0.557 − 0.964i)29-s + (0.898 + 1.55i)31-s + 1.35·35-s + 1.64·37-s + (−0.624 − 1.08i)41-s + (−0.304 + 0.528i)43-s + (0.291 − 0.505i)47-s + (0.214 + 0.371i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4212 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.939 - 0.342i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4212 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.939 - 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.620154302\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.620154302\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (0.5 + 0.866i)T \) |
| good | 5 | \( 1 + (-2 - 3.46i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (-1 + 1.73i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-2 + 3.46i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 - 2T + 17T^{2} \) |
| 19 | \( 1 + 2T + 19T^{2} \) |
| 23 | \( 1 + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-3 + 5.19i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-5 - 8.66i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 10T + 37T^{2} \) |
| 41 | \( 1 + (4 + 6.92i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (2 - 3.46i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-2 + 3.46i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 10T + 53T^{2} \) |
| 59 | \( 1 + (-4 - 6.92i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-7 + 12.1i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (1 + 1.73i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 16T + 71T^{2} \) |
| 73 | \( 1 + 10T + 73T^{2} \) |
| 79 | \( 1 + (-8 + 13.8i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 4T + 89T^{2} \) |
| 97 | \( 1 + (-1 + 1.73i)T + (-48.5 - 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.318722787635579657883370759815, −7.67760689707538305969090227413, −6.78851364991357310204536516151, −6.35999163851711778941089101648, −5.72381874997567182015928709245, −4.69407514231211404461411533710, −3.62878154429532031765140938907, −3.02486775436371686068199275395, −2.12619821714637538668494324312, −0.951642609230262267305226911386,
0.986201784551478799317341789883, 1.81413736804662595977172651594, 2.56371537692863679472990010296, 4.11854933526680175591099442388, 4.68283184720550380875812724769, 5.30923009211381278515036037747, 6.05129178862079530266475343784, 6.75387822901666802676019035979, 7.894394610814297621259935060266, 8.426307134069867592713667197275