L(s) = 1 | + (0.382 + 0.923i)3-s + (0.504 − 0.209i)5-s + (2.34 + 0.970i)7-s + (−0.707 + 0.707i)9-s + (1.94 − 4.68i)11-s + 2.53i·13-s + (0.386 + 0.386i)15-s + (1.13 + 3.96i)17-s + (1.03 + 1.03i)19-s + 2.53i·21-s + (−0.313 + 0.756i)23-s + (−3.32 + 3.32i)25-s + (−0.923 − 0.382i)27-s + (7.59 − 3.14i)29-s + (−1.98 − 4.78i)31-s + ⋯ |
L(s) = 1 | + (0.220 + 0.533i)3-s + (0.225 − 0.0935i)5-s + (0.885 + 0.366i)7-s + (−0.235 + 0.235i)9-s + (0.585 − 1.41i)11-s + 0.701i·13-s + (0.0997 + 0.0997i)15-s + (0.275 + 0.961i)17-s + (0.236 + 0.236i)19-s + 0.553i·21-s + (−0.0653 + 0.157i)23-s + (−0.664 + 0.664i)25-s + (−0.177 − 0.0736i)27-s + (1.40 − 0.583i)29-s + (−0.356 − 0.860i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 408 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.827 - 0.560i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 408 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.827 - 0.560i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.61191 + 0.494590i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.61191 + 0.494590i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.382 - 0.923i)T \) |
| 17 | \( 1 + (-1.13 - 3.96i)T \) |
good | 5 | \( 1 + (-0.504 + 0.209i)T + (3.53 - 3.53i)T^{2} \) |
| 7 | \( 1 + (-2.34 - 0.970i)T + (4.94 + 4.94i)T^{2} \) |
| 11 | \( 1 + (-1.94 + 4.68i)T + (-7.77 - 7.77i)T^{2} \) |
| 13 | \( 1 - 2.53iT - 13T^{2} \) |
| 19 | \( 1 + (-1.03 - 1.03i)T + 19iT^{2} \) |
| 23 | \( 1 + (0.313 - 0.756i)T + (-16.2 - 16.2i)T^{2} \) |
| 29 | \( 1 + (-7.59 + 3.14i)T + (20.5 - 20.5i)T^{2} \) |
| 31 | \( 1 + (1.98 + 4.78i)T + (-21.9 + 21.9i)T^{2} \) |
| 37 | \( 1 + (-3.31 - 7.99i)T + (-26.1 + 26.1i)T^{2} \) |
| 41 | \( 1 + (4.17 + 1.72i)T + (28.9 + 28.9i)T^{2} \) |
| 43 | \( 1 + (1.55 - 1.55i)T - 43iT^{2} \) |
| 47 | \( 1 + 4.86iT - 47T^{2} \) |
| 53 | \( 1 + (4.85 + 4.85i)T + 53iT^{2} \) |
| 59 | \( 1 + (2.24 - 2.24i)T - 59iT^{2} \) |
| 61 | \( 1 + (1.20 + 0.499i)T + (43.1 + 43.1i)T^{2} \) |
| 67 | \( 1 - 8.60T + 67T^{2} \) |
| 71 | \( 1 + (4.49 + 10.8i)T + (-50.2 + 50.2i)T^{2} \) |
| 73 | \( 1 + (10.8 - 4.49i)T + (51.6 - 51.6i)T^{2} \) |
| 79 | \( 1 + (-5.33 + 12.8i)T + (-55.8 - 55.8i)T^{2} \) |
| 83 | \( 1 + (8.06 + 8.06i)T + 83iT^{2} \) |
| 89 | \( 1 + 6.97iT - 89T^{2} \) |
| 97 | \( 1 + (17.9 - 7.42i)T + (68.5 - 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.48808742128101204235693761732, −10.40853915990372855942527013711, −9.462546760264792207243883086796, −8.542635842539752727043698718146, −7.995678050089038469040620433195, −6.39780560877118236190575192729, −5.56257265696416946861006529133, −4.39846721619229819637838508079, −3.30433444334661212253457064974, −1.66982574259377548604599095102,
1.37047026824774404494423953420, 2.70841805580405019798952780282, 4.31624319161032436048753764445, 5.28496771550577776440444091096, 6.67655825589712174843148714150, 7.42098576092720900254318183876, 8.242343178618825527710364218349, 9.378279085432235497290092188822, 10.20566356842039546792248607272, 11.22155367311665998196406395947